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Foreword

The ability to model vehicular flows in traffic networks under real-time information, and to
provide system users with route guidance information, constitute essential methodol ogical
components required to support the successful operation of Advanced Traveler Information
Systems and Advanced Traffic Management Systems. This report describes the
methodol ogies and procedures developed through a contract to the University of Texas at
Austin, in collaboration with the University of Maryland, to address these essential needs.
Specifically, a simulation-assignment methodology has been developed to describe user’s
path choices in the network in response to real-time information, and the resulting flow
patterns that propagate through the network, yielding information about overall quality of
service and effectiveness, as well as localized information pointing to problem spots and
opportunities for improvement. This methodology is intended for use off-line for evaluation
Purpos&s, or on-line for prediction purpose in support of advanced traffic management
unctions. In additional, Qforlthmlc procedures have been devel oped to determine the best
paths to which users should be directed so as to optimize overall system performance.
Powerful extensions to incorporate multiple user classes are also described as well as
strategies for rea-time ogeralional implementation. Taken collectively, and individualy, the
procedures described in this report constitute a significant advancement in the state of the art
of traffic modelling and dynamic network analysis, and an important step towards the
realization of intelligent vehicle-highway systems.

Notice

This document is disseminated under the sponsorship of the Department of Transportation in
the interest of information exchange. The United States Government assumes no liability for

its contents or use thereof.

The contents of this report reflect the view of the contractor who is responsible for the
accuracy of the data presented herein. The contents do not necessarily reflect the officia

policy of the Department of Transportation.
This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or
manufactures names appear herein only because they are considered essential to the object of

this document.
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Preface

This report describes the procedures developed under Tasks B and C of project DTFH61-90-
R-00074, “Traffic Modelling to Support Advanced Driver Information Systems (ADIS)*

The objectives of these tasks are to develop dynamic assignment and traffic simulation
models that can be used to support the functional operating core of ATIS (Advanced Traveler
Information Systems) and ATMS (Advanced Traffic Management Systems).

Two principal functions are addressed by the assignment-smulation models in an
ATIS/IATMS context. The first consists of determini ng, in rea-time, the network paths to
which the drivers should be directed in goi gdg toward their destination, so as to achieve

stem-level objectives. The second isthe prediction or description of the time-varying link
flows patterns that result from the path choices made by motorists in response to supplied
route guidance, traffic control actions, or other forms of information.

The procedures developed to address the first capability incorporate the second capability as
asub-problem. The dynamic traffic assignment algorithm developed to address the first
capability is an interactive procedure, within which atraffic simulation capability is required.

This report first describes DYNASMART, a simulation-assignment framework that meets all
functional requirements for ATISSATMS applications. It satisfies the second capability
indicated above. In addition to describing its conceptual and mathematical aspects,
implementation issues are extensively discussed, and results of application examples are

presented.

Next, the algorithmic procedures for the dynamic assignment capability described above are

developed and documented, including special requirements for multiple user classes. A
rolling horizon framework for on-line implementation is developed. Computational tests are

also presented.

The report aso describes the extensive path processing capabilities developed in conjunction
with the above procedures.

The methodol ogies developed in this report represent a significant advance in the state-of-
the-art of network assignment and traffic sSsmulation, and form the basis of the new
generation of modeling approaches and advanced methodol ogies needed to support emerging

IVHS technologies.
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CHAPTER 1
INTRODUCTION

MOTIVATION

Applications of advanced technol ogiesin telecommunications, information technology,
microprocessors and automation to intelligent vehicle-highway systems provide new
opportunities to improve the performance of traffic networks under both recurrent and non-
recurrent congestion. For instance, Advanced Traveler Information Systems (ATIS) and
Advanced Traffic Management Systems (ATMYS) will provide drivers the capability to
communicate with the network control center on a real-time basis.

However, the sophistication in technological and hardware capabilities needs to be
matched by more powerful methodological and algorithmic constructs than presently
available, especialy for real-time control in large-scale traffic systems. This report
describes the procedures developed to address the critical need for dynamic route
assignment and associated rea-time network traffic simulation capabilities.

PROBLEM DEFINITION

The problem addressed in this study consists of the specification and development of
dynamic network assignment capabilities and associated traffic performance simulation
capabilities that will be necessary to achieve the potential of in-vehicle route guidance
Advanced Traveler Information Systems (ATIS) in conjunction with Advanced Traffic
Management Systems (ATMS) for improving the productivity and efficiency of traffic
networks under recurrent and non-recurrent congestion. The dynamic assignment
capabilities required must serve the following principa functions:

1. Allow a central controller, with partial or complete information about time-
dependent origin destination (O-D) trip desires as well as current link status conditions
(loadings, prevailing link travel times, capacity reducing incidents), to route all trips from
their current position (including initial originsand intermediate | ocations) to their respective
destinations so as to achieve system-wide objectives, subject to certain constraints. In
other words, the controller seeks to direct users to routes that somehow “optimize” the
overal performance of the system, subject to reasonableness and fairness constraints for
individual users. This information would form the basis of route guidance instructions to
be provided to suitably equipped vehicles on areal-time basis. This capability then reflects
anormative perspective, and gives rise to a system optimal dynamic assignment problem.



In solving this problem, the controller needs to consider the presence of multiple classes of
users in terms of accessto information, types of available information, and behavior in
response to thisinformation, This capability would be used primarily on-line for the above
purpose, or off-line to determineinitial assignments and routing schemes for the routine
and historically known trip patterns, which would subsequently be updated on-line.

2. Allow the controller or analyst to determine, for known O-D trip desires, the time
varying link flow patterns that result from the path choice decisions made by motorists, in
response to real-time information supplied by the ATIS controller. This on board
information might consist of specific route guidance instructions, or of prevailing and/or
predicted link trip times, subjected to varying degrees of on-board and/or central
processing. This descriptive assignment capability is needed off-line to evaluate aternative
traffic control schemes, information supply strategies, and/or normative routing and
assignment approaches, as well as on-line in connection with a model system to determine
what information to provide to motorists. This capability is also needed as a support
function for Advanced Traffic Management Systems (ATMS).

Both types of assignment capabilities require the network traffic simulation capability
to determine the principal figures of merit that describe the performance of the system,
particularly the link trip times, for a given dynamic assignment pattern (i.e., time-dependent
link flow patterns), for both on-line and off-line use.

In addition to the conceptual and algorithmic aspects of the above models, the
computational issues associated with their implementation for real-time operation constitute
an integral element of the problem. In particular, the development of algorithmic
procedures must consider the issue of computational efficiency in novel computing
architectures with varying forms and degrees of parallelism.,

OBJECTIVES AND STRUCTURE OF THE REPORT

This report describes the conceptual, mathematical and algorithmic aspects of the
procedures devel oped to provide the dynamic assignment and associated simulation
functions described in the previous section. In addition, it describes the implementation of
these procedures into computer code, and gives illustrative results of computational
applications to test networks.

The review of existing procedures for dynamic assignment and traffic simulation, and
their limitations vis-a-vis ATISATMS applications have been presented in a separate
project report (Mahmassani, et al., 1992), and will not be repeated here.



The DYNASMART simulation-assignment framework, which addresses the second
(descriptive) capability stated in the previous section, is described in Chapter 2. The
functional requirementsfor ATISSATMS applications, as set forth by the project Statement
of Work prepared by FHWA, are first reviewed, as these have guided the development of
the various capabilities of the modelling framework. Chapter 3 focuses on implementation
and computational issues, and reports the results of several numerical experiments with
DYNASMART.

Chapters 4 and 5 address the dynamic assignment capability stated first in the previous
section. Chapter 4 develops the conceptual and mathematical formulations of the problem,
and describes the algorithmic procedures designed for the solution of both System Optimal
(SO) and User Equilibrium (UE) versions of the problem, for a single class of users.
Results of computational experiments are also discussed, highlighting the potential benefits
of SO assignment.

Chapter 5 extends the procedures described in Chapter 4 to the more general and
realistic case of multiple user classes. In this case, only a fraction of users receive SO
information, while others may follow UE principles or other behaviora rules. A rolling
horizon framework for the on-line real-time application of these proceduresis also
described.

Chapters 6 and 7 focus on the path processing procedures developed as essential
components of both the DYNASMART simulation-assignment framework and the
normative dynamic assignment models. Severa types of path processing needs are
encountered in these problems, including the computation of k-shortest paths and the
computation of time-dependent shortest and least-cost paths. In addition, specid
implementation i ssues associated with turning movements and multiple user classes are also
addressed. Because of the computational intentiveness of path cal culationsin the context of
the assignment and simul ation procedures, particular attention is directed at optimizing their
computational performance.

Finally, concluding comments are presented in Chapter 8.



CHAPTER 2
DYNASMART

INTRODUCTION

This chapter documents the development of DY NASMART, a network assignment-
simulation modelling framework designed to assign time-varying traffic demands and
model the corresponding traffic patterns to evaluate overall network performance of ATIS
and/or ATMS. In its present form, DYNASMART is primarily a descriptive anaysis tool
for the evaluation of information supply strategies, traffic control measures and route
assignment rules at the network level. However, it is evolving towards amodel that may
be executed on-line in quasi real-time to support the functions of the system controller in
the ATISATMS. The moddl is designed to meet functional requirements set forth by
FHWA for ATMS/ATIS applications, including sensitivity to awide range of traffic control
measures for both intersections and freeways, capability to model traffic disruptions due to
incidents and other occurrences, representation of several user classes corresponding to
different vehicle performance characteristics, different information availability status and
different behavioral rules. DY NASMART is based on the assignment-simulation model
developed by Mahmassani and Jayakrishnan (1990, 1991) at the University of Texas at
Austin. The structure, capabilities and principal modelling features of DY NASMART are
examined in this chapter. Implementation issues, numerical results and computational tests
are discussed in Chapter 3.

Functional Requirements

Traffic smulation models for surface street networks and for freeways have
historically devel oped independently; therefore, these models by themselves are not
appropriate to evaluate a traffic system or to predict traffic patterns for an ATISATMS. A
traffic simulation model for use in connection with ATIS/ATMS should be able to smulate
both freeways and arterial streets as an integrated network. The control strategies for
different sub-networks can thus be coordinated and operated efficiently. In addition, there
are several functional requirements set forth by FHWA for ATISATMS applications that
need to be incorporated in the simulation-assignment model. These are summarized as
follows:
A. Functional Requirements for Surface Streets

1. Redlistic representation of changesin traffic signal control.



2. Capable of modelling various types of link geometric configurations.

3. Precise simulation of traffic related effects.

4. Concise but precise measurement of the system effectiveness on both alink specific
and network wide bases.

5. Capable of simulating trip generation and attraction centers, and bus operations as
well as related facilities.

B . Functional Requirements for Freeway Systems

1. Redlistic representation of traffic characteristics and geometric configurations.

2. Detailed simulation of ramp flow characteristics and traffic control strategies.

3. Concise output statistics for measurement of the effectiveness on both alink specific
and network-wide bases.

C. Specia Functional Requirements for Use in ATIS systems

1. Able to simulate traffic flows at the individual vehicle/driver level.

2. Able to model the route choice behavior of drivers with and without the accessto
ATIS systems.

3. Capable of accepting data from both the surveillance and historical traffic
information at a user specified time period.

4. Responsive to dynamic OD information reported by the ATIS system.

5. Ableto track the route and location of each driver who accepts the route advice from
the control center.

Features of DYNASMART

DYNASMART has been conceived and developed as an integrated simulation-
assignment model which meets and in many respects exceeds the requirements for ATIS
and ATM S applications. The flexible framework of DY NASMART allows usersto add
independent modules for future developments. This modularity and flexibility are essential
inarapidly evolving area such as M-1S, where emerging knowledge on aspects such as
user behavior and response to traffic information, as well as new traffic control schemes
must be incorporated in the dynamic assignment-smulation framework. Although
DYNASMART is still adescriptive model, it can be incorporated within other algorithmic
frameworks for optimization purposes, The special featuresin DYNASMART to date are
summarized asfollows:
1. Simulate traffic flow at theindividual or packet level (according to macroscopic

trafficrelations).



2. Model the path selection decisions of individual travelers, both en-route and at the
trip origins.

3. Model multiple user classes corresponding to different vehicle performance
characteristics, information availability, and different behavioral rules.

4. Track the route and location of vehicles, individually or in packets.

5. Model different control strategies for both freeway systems and surface streets.

6. Model traffic disruptions due to incidents and other occurrences.

7. Simulate different signal control strategies

8. Provide the model users with three output levels ( system, link and vehicle)

9. Provide an experimental graphic subsystem in Xwindow.

DYNASMART MODEL STRUCTURE

Several approaches have been applied to evaluate traffic systems under ATISATMS,
including analytical methods, assignment-based models and simulation-based models.
Because of the complexity of the problem and the issues involved, a model for evaluating
system performance for ATISSATMS with adeguate realism needs to combine the concepts
and features of simulation and assignment methodologies. In light of the limitations of
existing traffic smulation models, as well as those of network assignment models, for
ATISIATM S applications, four possible devel opment strategieswereidentified:

1. Interface existing traffic simulation models and network assignment models.

2. Add network path processing and route choice capabilitiesto an existing traffic
simulation package.

3. Add dynamic traffic flow simulation capability to an existing (static, by necessity)
network assignment package.

4. Configure a simulation-assignment model structure to best fit the functional
requirements of the ATISATMS context.

DYNASMART is based on the fourth strategy. Its overall structure is shown in
Figure 1. The approach adopted in DY NASMART integrates traffic flow models, path
processing methodol ogies, behavioral rules and information supply strategies into a single
simulation-assignment framework. The input data include time-dependent OD matrices and
network data. At the core of the framework, and essentia to its flexibility and efficiency, is
an integrated network representation system that supports extremely efficient path
processing routines, which provide essential information to both user behavior models as
well asinformation supply strategies.



Given the network representation, link characteristics as well as control parameters,
the simulation component will take a time-dependent loading pattern and process the
movement of vehicles on links, as well as the transfers between links according to specified
control parameters. These transfers require instructions that direct vehicles approaching the
downstream node of a link to the desired outgoing link. The user behavior component is
the source of these instructions, as it determines individual path decisions of users in the
network. Alternatively, path decisions may be pre-assigned for some or all users according
to a particular assignment scheme, as is the case when DYNASMART is used as a
simulator in the context of algorithmic procedures (such as those described in Chapters 4
and 5). The components of DYNASMART are described hereafter.

Simulation Component
. Link Node
Time Dég?dent OD | __| _,@—

Densities, Travel
Time on Links

Path
Processing

User B'ehavior : Path
Component ) Selection

Figure 1. DYNASMART Model Structure

Simulation Component

In DYNASMART, the macroparticle, macroscopic simulation concept is applied in the
simulation of mixed traffic. The simulation model is an extension of the macroparticle
simulation model (MPSM) (Chang et al., 1985), initially developed as a special-purpose
code for experimental studies of commuter behavior dynamics in congested traffic
corridors.



Macroscopic simulation models use the traffic stream relationships to describe traffic
interactions. In general, this approach is based on a continuum representation of traffic,
described in terms of the continuity equation:

~§% +%k = gx,0

where,
q = flow (vehicles/ hour),
k = concentration ( vehicles/mile ), and
g = net generation at source/ sink.

The above equation is usually coupled with a speed-density relationship. In addition,
macroscopic simulation models typically calculate link flows using the identity g =k v
(where v is the average speed). The continuity equation, expressed in finite difference
form, is solved numerically using discrete time steps. However, for links of finite lengths,
moving vehicles according to the q = k v identity may lead to physically unrealistic speeds,
as discussed in Chang et al. (1985).

For this reason, DYNASMART moves vehicles in discrete bunches or macroparticles,
at the prevailing local speeds determined from the speed-density relations. The
macroparticle concept is adapted from plasma physics (Leboeuf et al., 1979) which exhibits
similar properties in this regard. In previous work, 5 to 20 vehicles were used as a
macroparticle (Chang et al.,1985; Mahmassani and Jayakrishnan,1988). In its current
implementation, DYNASMART uses a macroparticle of one vehicle, meaning that it
effectively track the movement and location of individual vehicles. However, it does not
keep track of the microscopic details of individual traffic maneuvers, such as car following.

DYNASMART uses established macroscopic traffic flow models and relationships to
model the flow of vehicles through a network. However, whereas macroscopic simulation
models do not keep track of individual vehicles, DYNASMART moves vehicles
individually or in packets, thereby keeping a record of the locations and itineraries of the
individual particles. Multiple user classes with different vehicle performance characteristics
are modelled as different packet sizes in DYNASMART. The traffic simulation consists of
two primary modules: link movement and node transfer, as described hereafter.



Link Movement

The link movement module consists of a process for moving vehicles on links during
every simulation time step or scanning time interval in the simulation. Note that the
network's links are subdivided into smaller sections or segments for traffic simulation
purposes. The vehicle concentration prevailing in a section over a simulation time step is
determined from the solution of the finite difference form of the above continuity equation,
given the concentration as well as inflows and outflows over the previous time-step. Using
the current concentration, the corresponding section's speeds are calculated according to a
speed-density relationship, e.g.,

t
Vi = (- ) (1-Kj 1K) %+ ¥
where,
I , K. =means ed and concentration in section i during the t-th time step,
i’ ™ pe

V¢, Vp =mean free speed and the minimum speed, respectively,

K¢ =jam concentration, and

o = a parameter used to capture the sensitivity of speed to the concentration.

Node Transfer

The node transfer module performs the link to link or section to section transfer of
vehicles at nodes. For interrupted link flow, the node transfer allocates appropriately the
right of way according to the control strategy at this intersection. It determines the number
of vehicles that are traversing each intersection in the network at each simulation time step
as well as the number of vehicles entering and exiting the network. The output of the node
transfer includes the number of vehicles that remain in queue and the number added to and
subtracted from each link section for each simulation time step. A wide range of traffic
control measures for both intersections and freeways are reflected in the outflow and inflow
capacity constrains of the node transfer module.

User Behavior Component

It is assumed that for different alternative designs of an information supply system, the
basic information ultimately available to the drivers will include travel times on alternate
routes. The best route available may also be brought to the driver's attention. However,
drivers may not be required to follow the route suggested to them. Thus behavioral rules



governing travelers' route-choice decisions need to be incorporated, with the flexibility to
also model the special case in which drivers actually follow the guidance suggested.
Experimental evidence presented by Mahmassani and Stephan (1988) suggests that
commuter route choice behavior exhibits a boundedly-rational character. This means that
drivers look for gains only outside a threshold, within which the results are satisfying and
sufficing for them. This can be translated into the following route switching model:

5. () ={ L. if TTCj(k) - TTBj(k) > max(nj - TTCj(k) , 7))
J 0 . otherwise
where, for driver j,
Sj (k) : 1, indicates a route switch; 0, no switch at node k,
TTCj(k) : Trip time from node k to destination on current path,
'ITBj(k) : Trip time along the best path,
nj: Relative indifference threshold, and

T Minimum improvement needed for a switch.

The threshold level may reflect perceptual factors, preferential indifference, or
persistence and aversion to switch. The quantity nj governs users' responses to the

supplied information and their propensity to switch. The value is treated as a random
number; when generated, a user is assigned randomly and independently a value for 1j .
For convenience, nj is assumed to follow a triangular distribution, with given mean 1 and

range of /2. The minimum improvement 7j is currently taken to be identical across

tripmakers according to user defined values. Nevertheless, all these parameters should be
calibrated from field experiments.

Alternatively, DYNASMART can model route choice at a node according to a
probabilistic discrete choice function, e.g. of the logit form. As behavioral research results
in improved user response models, these can be incorporated within the DYNASMART
framework with relative ease because of its modularity and flexibility afforded by the path
processing capabilities.

Path Processing

The path processing component of DYNASMART determines the route-level attributes
(e.g. travel time), for use in the user behavior component, given the link-level attributes
obtained from the simulator. For this purpose, a multiple user class K-shortest path
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algorithm with movement penalties is interfaced with the simulation model to calculate K
different paths for every origin-destination pair. However, in order to improve the model’s
computational performance, the K-shortest paths are not re-cal culated every smulation time
step, but only at pre-specified intervals. In the interim, the travel times on the set of K
current paths are updated using the prevailing link travel times at each simulation time step,
or every few steps to further reduce computational requirements. The K-shortest path
agorithms and computational experiments are further described in Chapters 6 and 7. There
are two important ways that this path information is used:

1. Initia Routes

At the beginning of trips, non-equipped drivers need to be assigned to specific paths or
initial routes. While there is no universally agreed upon process for assigning initial
routes, some researchers have suggested user equilibrium or stochastic user equilibrium
assignment for these initial routes. In DY NASMART, initial routes are modelled in an
explicit way, allocating driversto the K-shortest paths according to a pre-specified rule. Of
course, when DYNASMART is used as a simulator in conjunction with an algorithmic
search procedure, initial paths may be determined by the search. In practice, such
assignments for some vehicles may also be available from historical information based on
actual measurements.

2. Current Path Information

Current path information forms the basis of driver path choice decisions at every node
according to the user behavior component module. In its present version, only current trip
times are available to drivers. The current path information is used in equipped vehicles as
well asin Variable Message Signs (VMS) route control module. The latter is explained
further in the VMS sections. A time-dependent K-shortest path routine has also been
developed and could be incorporated within DYNASMART to simulate anticipatory
information supply strategies. Such “anticipatory” strategies are now provided with the
system optimal, user equilibrium or multiple user class assignment algorithms discussed in
Chapters 4 and 5. Additional anticipatory strategies with predicted time-dependent trip
times can al so be easily implemented if adatafusion and prediction functionis provided (in
aseparate module).
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TRAFFIC SIMULATION IN DYNASMART

DYNASMART uses macroscopic traffic models to quantify interactions among
vehicles and calculate movements of vehicles along links. However, there are features that
need to beincluded in order to capture traffic complexities and provide essential capabilities
for ATIS/ATMS applications. This section addresses these features in the modeling
process.

Table 1. Traffic Control Strategies in DYNASMART
Surface Street Freeway System

l. Control Types

a No Control a Ramp metering
b. Yield Control b. Changeable message signs
c. Stop signs

d. Signal Control
(green,red,amber time, cycle
time, offsets, phases)

Pretimed

Pretimed Coordinated
Multidial pretimed
Actuated ( full )

1. Geometric Configurations

a Saturation Flow Rate a. Number of lanes
b. Number of Lanes b. Capacity
c. Number of Approaches c. HOV lanes

1. Measure of Effectiveness

a. Average Speed a. Average Speed
b. Average Travel Time b. Average Density
c. Average Delay c. Average Ramp Queue Length

Traffic Control Elements

DYNASMART provides the ability to explicitly model an array of control elements,
listed in Table 1. The major element for surface streetsis signal control, which includes
pretimed control and actuated control. Ramp metering and variable message signs (VMYS)
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are the major controls for the freeway system. The geometric configurations and measures
of effectiveness which are to be included are also listed in Table 1. The following sections
address these elementsin detail.

Capacity Control

The node transfer is designed to simulate the input and output flows of vehicles on
each approach at intersections operating under a number of control strategies. It calculates
the number of vehiclesthat traverse each intersection in the network during each simulation
time step as well as the number of vehicles entering and exiting the network. Severd
concepts regarding the modelling of vehicle flows in the node transfer are discussed
hereafter, in particular: outflow and inflow capacity constraints, equivalent green time for
unsignalized intersections, and signalized control.

Outflow Capacity Constraints

The outflow constraints limit the maximum number of vehicles allowed to leave each
approach lane at an intersection. These constraints are described in the following equation
which states that the total number of vehicles that enter an intersection (from a given
approach) depends on the number of vehicles waiting in the queue at the end of the current
simulation interval (time step), AT, and the capacity of this approach. The definition of
capacity follows the 1985 HCM, and consists of the maximum number of vehicles that can
be served under prevailing traffic signal operation.

VI1i=Min{VQj;VS}
where,
VIj : maximum number of vehiclesthat can enter the intersection during A T,
V@ : number of vehiclesin queueonlink i at theendof A T,
VS : maximum number of vehicles can enter the intersection during A T, i.e. Gi S
Gi : remaining effective greentimeduring A T,
Sj : saturation flow rate, and
A T : the smulation interval.

Inflow Capacity Constraints
The inflow constraints determine the maximum number of vehicles allowed to enter a
link. These constraints bound the total number of vehicles from all approaches that can be
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accepted by the receiving link; they include the maximum number of vehicles from all
upstream links wishing to enter link j, the available physical space constraint on the
outbound link and the section capacity constraint of link j.

M (2 . .
VOj = Min { keUVIkJ s VEj ,CJAT }
where,
VOj : number of vehicles that can enter link j

U : set of inbound links into link j (i.e. in the backward star of j)
VIkj : number of vehicles wish that to move from k to j

VE; : the available space on link j
G; . approach capacity of link j

Signal Control

Signal control can be separated into pretimed signal control, pretimed coordinated
control, multidial pretimed signal control, and actuated signal control. All such signal
controls are modelled explicitly in DYNASMART. Detailed input data preparation is
described in a separate Technical Report (Mahmassani et al. , 1993), and summarized in
Appendix A.

Equivalent Green Time for Unsignalized Intersections

DYNASMART uses the equivalent green time concept to allocate the right of way
based on the incoming volume at unsignalized intersections. This can be applied to no
control, stop sign and yield sign control.

GEi=(CVQi/ZCVQk)AT

where,
GE; : equivalent green time for i-th phase
CVQ; : critical vehicle volume in queue of i-th phase
AT : simulation time step

Greater detail in modelling unsignalized intersections is not warranted for ATIS/ATMS
applications because such intersections tend to be relatively uncongested and to serve
mostly local traffic needs.
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Pretimed Signal and Pretimed Coordihated Control

Input data in this module includes phase number, offset, green time, red time and
amber time for every phase. For pretimed signal control, green times are set for every
phase according to this data. Since DYNASMART is not intended as an optimizer of signal
system control, the model user has to input offsets obtained exogenously from other
models to coordinate arterial streets or the network as a whole. Alternatively, optimization
modules could be developed for ATMS applications.

Actuated Signal Control

Instead of detecting individual vehicles, DYNASMART uses an appropriate
macroscopic method that determines equivalent green times that are updated to reflect
prevailing approach volumes. Two alternative methods are provided in the current version
of DYNASMART to represent actuated signal control.

In the first method, green splits are apportioned according to Webster's rule for the
measured arrival flow rate. This approach attempts to capture the essential features of
actuated signal control : "max out" and "gap out". Max out occurs when the green time for
a given phase reaches a preset maximum green time; it is modelled explicitly here. Gap out
occurs in the field when a preset time elapses with no detector (generally specified to avoid
excessively long delays at conflicting approaches) actuations for the phase in progress,
resulting in discontinuation of the green for that phase. In the simulation, because detector
actuations are not directly simulated, gap out is only approximately emulated under the first
method as the provided green time is intended to serve only vehicles present on a particular
approach. The input data set in DYNASMART include maximum green time, minimum
green time, default cycle length and the other signal data, such as phase number. The
equation used in calculating green time under the first method for an actuated signal control
emulation is given below. The concept is to allocate green time depending on incoming
volume. If the required green time is larger than the maximum green time or smaller than
the minimum green time, the maximum or minimum green time is assigned, respectively.

Gi=(CVi/ZCVj) (C-losttime)
subject to
Min Green < Gj < Max Green

CVi : critical volume for phase i
C : default cycle length
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If CVi is less than the maximum number of allowable vehicles, the green time will be
reduced accordingly. These calculations are performed at the end of the current cycle.
Cycle length will change every cycle. This modeling will be fairly accurate in allocating
green time as congestion increases in the network. It will be somewhat |ess accurate under
light traffic conditions; however the dynamic assignment capability in ATMSis of primary
concern during congested periods.

In the second method, the green time for a given phase is determined based on the
number of vehicles that would have reached the intersection at the end of the current
simulation interval. This green is subsequently extended as appropriate each simulation
interval until “max out” is reached, or terminated if no longer needed, thereby emulating
“gap out”. This second method does not require a default cycle length, and may skip a
phase atogether if no vehicle demand exists and no minimum green is specified.

Real-Time Sgnal Control

DYNASMART provides an independent module for real time signal control which
gives an interface to update signal parameters during the simulation. These parameters can
be controlled by user specified rules or prepared exogenously in advance. The module is
intended to assist in testing different real time control strategies.

Communication Interface between Simulation and Path Processing

In DYNASMART, the path processing component utilizes the travel time information
generated from the simulation. The travel time information for links is separated into two
parts : travel time for vehicle movement and queueing time. Traffic on each link segment is
modelled as consisting of two parts (as shown in Figure 2): those vehicles in the upstream,
moving part, and those in the downstream, queueing part.

I
Vm V
O———0
Moving “Vehicles in
Vehicles Queue
|

Figure 2. Conceptual Portions on a Link Segment
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1. Average Travel Time for Moving Part

Average travel time on link segments for each time step is calculated directly from the
traffic stream model used in the simulation. The density and speed is obtained for every
simulation interval, then travel time is calculated from available length and associated
speed.

2. Average Queue Delay

The average queue delay is considered to be the time for clearing the queue at the
queue service rate experienced in the recent past over a certain period (say 3 minutes). The
queue discharge calculation considers the average outflow rate and the congestion of
downstream links.

Queue Delay = Vq / ASj

where,
Vq : number of vehicles in queue (vehicles),

AS; : average flow rate (vehicles/seconds) = =T ,

fk : flow rate at k-intervals, and
T : period over which the average queue service rate is calculated.

INCIDENT MODELLING
Incidents are modelled in DYNASMART to reflect accidents, lane closures or other
occurrences. Basically, incidents are modelled completely based on external data, and can
be specified to occur at any time during the simulation on any link or segment. All
incidents cause the reduction of lane capacity. If a whole link or segment is closed, all
vehicles (equipped as well as non-equipped) otherwise using the link are diverted to other
paths. Some features of incidents modelling in DYNASMART are summarized as follows:
1. Incidents are specified as reductions of link capacity for a specified time period.
2. All calculations are based on user-specified input information about the incident specifics
(location, start time, end time, severity).
3. Complex incidents can be modelled as a series of consecutive incidents.
4. Non-equipped vehicles will be diverted for a street closure only when they reach the
upstream node of the blocked link.
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FREEWAY CONTROL

Freeway management techniques can be categorized as capacity management and
demand management. Capacity management, such as ramp control and variable speed
control, tries to maximize throughput and maintains a certain level of service. Demand
management, on the other hand, attempts to reduce the number of vehicles at the peak
period. In DYNASMART, two important elements of freeway management are
implemented, namely, entrance ramp control and HOV lanes. In addition, variable
message signs (including speed control for mainline regulation) may be modelled, though
these are not limited to freeway links.

Ramp Control

Ramp control is the most widely used freeway control measures. Its purpose is to
limit the number of entering vehiclesin order to maintain a satisfactory level of service
within capacity limit. Ramp control includes entrance ramp control as well as exit ramp
control. Since exit ramp control is seldom used, it is not explicitly modeled in
DYNASMART. However, it could be simulated through other built-in modules, such as
lane closure and VMS. According to the Traffic Control Systems Handbook, (FHWA,
1985) there are five types of entrance ramp control: closure, ramp metering, traffic-
responsive metering, gap-acceptance merge control and integrated ramp control. The first
three methods, explicitly modelled in DYNASMART, are explained as follows:

1. Closure

For ramp closure, drivers need to select aternate routes to their destination. Since
equipped vehicles receive current traffic information, they can respond to ramp closure
before they reach the ramp. On the other hand, non-equipped vehicles do not have this
advantage, so they will choose another route after they reach the closed ramp. However,
the VMS can be applied on arterial streets as early warning, so non-equipped vehicles can
be diverted prior to their arrival. The choice of alternate route for non-equipped vehicles
also depends on driver behavior, and requires an observational basis to devel op appropriate
path selection rules. DY NASMART provides aflexible way to divert the non-equipped
vehicleswhich alows users to define ak-th best path number or to randomly choose a path
from path files.
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2. Ramp-Metering

Basically, DYNASMART controls vehicle flow under in-flow and out-flow
constraints. In ramp metering, afixed ramp rate or adynamic ramp rate that determinesthe
maximum number of entering vehicles can be determined in conjunction with the capacity
calculations during a specified time period.

3. Traffic-Responsive Metering

Traffic-responsive metering is directly controlled by the mainline and ramp traffic
conditions during the metering period. Occupancy control and demand control are two
widely used methods for traffic-responsive metering. ALINEA (Papageorgious et a.,
1991), a local feedback control law for on-ramp metering, is implemented in
DYNASMART. A typical feedback law isgiven asfollows:

Rate(T+l) = Rate(T) + Kr ( Ko- OCC)

Kr: rate adjustment parameter (default value 0.32)

Ko : nominal (target) occupancy (default value 0.2)

OCC : detector occupancy

Rate(t) : max: 35 - 25 vehg/min-lane; min: 5 vehs/min-lane

The given default values of Kr and Ko are from numerical results by Joseph (1993), and
areintended for illustrative purposes only.

High-Occupancy Vehicle Priority Control

Priority for high-occupancy vehiclesisto provide preferential treatment through HOV
lanes for buses and carpools. The purpose of HOV lanes is to encourage carpools or buses
in order to reduce overal vehicle demand. Methods of priority control include separated
facilities, reserved lanes, and priority access control. InDYNASMART, HOV lanes are
part of atraffic network represented by links and nodes. In order to preclude non-high-
occupancy vehicles from using the HOV lanes, the travel times on these links are set to
infinity for non-HOV vehicles for the path caculation.

LEFT TURN MOVEMENT

Left-turn movements are a critical delay-causing factor in urban networks. However,
it is very difficult to model the left turn movement in a macroscopic simulation model. In
this section, the left-turn issue is discussed and the modelling process used in
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DYNASMART is introduced.
For left-turn movements without a turning phase, the analytical approach is to
calculate the blocked time by opposing vehicles flow at the onset of green and then use gap
acceptance models to calculate the actual number of vehicles which can pass the intersection
during the residual green interval.
Left-turn capacity is determined by several factors : opposing volume, number of lanes
of the opposing approach and green time for this phase.
I
|

' A

Qu - Q

Figure 3. Left Turn Movement

The blocked time from the onset of green that left turning vehicles cannot use is calculated
as follows :

Blocked Time:
Tp=(QN) (L1+L2+R) /(S - Q/N)

where,
Tp, : blocked time, time blocked by opposing traffic; clear time for queue,
Q : total opposing flow (vehs/hr),
N : # of opposing lanes,
L1 : Jost time for opposing traffic,
L2 : lost time for start-up,
R : red time, and
S : saturation flow for opposing traffic.

20



Then, usable time for left turn vehicles can be calculated as:
Tu=G+(TaLI)-L2-Tb

where,
Tu : usable time of cyclefor left-turn ( second)

G: Greentime
Ta: amber (yellow) time

The maximum number of possible left turn vehiclesisequal to:
n=(Tu h)+l, whereh: minimum turning headway ( = 2.5 seconds)

Thus, a gap acceptance model (Drew, 1968) can be used to calculate the left turn capacity
asfollows:

QL=(TWC)QLT

-(Q/3600)*Tc
Qe

LT= '
Q o (Q/3600) N

where,
QL : left turn capacity,
QLT : left turn saturation flow, veh/hr,
Tc: critical gap, seconds, and
h : turning headway, seconds ( = 2.5 seconds).

The modeling process for the left turn is complex and not easy to combine with any
macroscopic simulation. Therefore, a heuristic modeling process is used to capture effects
of left turnsin DYNASMART. The processis summarized as follows:

1. Count left-turn vehicles.
2. Calculate maximum flow rate for left-turns;
This rate can be calculated under different situations:

a) Protected left turn phase: saturation flow rate.

b) Permissive phase: from gap acceptance models or established tables.

3. Calculate an average number of |eft-turn vehicles and also reduce the saturation flow rate
for straight and right-turn approaches.
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4. Follow outflow- inflow constraints to transfer vehicles from link to link.
5. Calculate the left turn delay for the K-shortest path cal cul ation.

L eft-turn capacity estimation determines the number of |eft-turn vehicleswhich can
enter the intersection without delay due to opposing volume. Different approaches have
been used in determining the left-turn capacity. For example, a gap acceptance model is
applied in TRANSYT 7F for permissive movement (Wallace et a., 1991). A review of
left-turn capacity issues can be found in Lin, et a. (1984). DY NASMART adopted the
left-turn capacity values from Lin et a. (1984) that are derived on simulations using
TEXAS (Lee et a., 1983) model. The left-capacity is determined by severa factors, such
as opposing flow, number of opposing lanes, and signal timing). The saturation flow rate
for other movements is adjusted according to 1985 HCM. The left-factor in the adjustment
is based on four variables, namely, exclusive or shared lanes, type of phasing, proportion
of left-turn vehicles, and opposing volume. The left-turn capacity and adjusted saturation
flow rate are used in inflow-outflow capacity constraints.

MULTIPLE USER CLASSES

DYNASMART allows for different classes of users with different information
availability, and/or behavioral responses and/or traffic performance characteristics. Vehicle
classes can differ by vehicle type, network restrictions, and information availability. Since
avariety of attributes are generated for vehicles, vehicles are not identical even within the
same class. Currently, seven different classes are modelled in DYNASMART for
illustration purposes, and more classes can be included. The seven classes are;
1. non-equipped passenger car,
2. non-equipped truck,
3. non-equipped high occupancy passenger car,
4. equipped passenger car,
5. equipped truck,
6. equipped high occupancy passenger car, and
7. bus.

All the equipped vehicles follow the rules stipulated in the user decisions component.
In the current version, the default is the boundedly rational behavior rule discussed earlier,
with a relative indifference band and a minimum threshold value. Different vehicle sizes
are modelled as packets of different passenger car units, specified by the user. The packet
sizeisused in calculating concentration, available capacity, inflow and outflow constraints.
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With this ability, DYNASMART can model virtually any network restrictions, such as
turning prohibitions, and special facilities, such as bridges. The HOV concept was
described in a previous section. Bus operation is discussed in alater section.

VARIABLE MESSAGE SIGNS (VMS)

One way to provide dynamic route information to drivers is by means of Variable
Message Signs (VMYS) where visual word, number, or symbolic display can be
electronically or mechanically varied according to current traffic conditions. VMS displays
can address a considerably wide range of traffic management functions; however, drivers
arenot usually required to follow all messagesfrom VMS. Since the response of driversto
different VMS is still in need of further study, the use of the VMS module in
DYNASMART should be accompanied by areasonable assumption on driver behavior.
The VMS module in DYNASMART includes three parts: speed advisory, route advisory
and route warning messages.

Speed Advisory

Speed advisory is mainly used for mainline control of freeway systems; experiments
with speed advisory changes have been undertaken in several European countries.
Through field experiments, it has been reported that reasonable speed limitation during
rush hoursincreases capacity ( Papageorgiou, 1983). InDYNASMART, speed advisory
applies at VMS locations when the density exceeds a pre specified value. Then, all the
vehicles are assigned the advised speed.

Route Advisory

Route advisory may provide an alternative path for vehicles in order to avoid a
congested section. InDYNASMART, the user needs to define a k-th number of paths (or a
fixed path) to be displayed, and all the vehicles will follow the new path to their
destinations. Of course, a more comprehensive set of response rules will need to be
specified in the user behavior component as results of related targeted research become
available.

Route Warning
This form of real-time information provides instructions for drivers to divert in
advance of a congested section. In the current implementation, the warning message is
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generated when the concentration of downstream link reaches the maximum concentration,
and a given fraction of the vehicles are diverted to other randomly generated routes. The
intent isto retain flexibility to incorporate more complete instructions as ongoing research
into ATMS strategies produces testabl e concepts.

BUS OPERATIONS

In DYNASMART, buses are treated as packets with predefined paths; each packet
includes two passenger car units. Simulation of bus operations largely depends on related
input information namely:

BUSID : anidentifier for bus
Start Time : the start time of the bus
Averagestop (dwell) time
Number of nodes in the route
The sequence of nodes
Theactivitieson links
0: no stop
1: stop at the near side
2: stop at the midblock
3: midblock curb stop ( or bus bay)

During the simulation, each busis treated as a packet of two passenger car units. In the
link movement, buses are mixed with other vehicles when calculating the prevailing
average speeds and concentration. In the node transfer, capacity with 2 pcu’sis used for
transferring a bus from link to link. Loading and unloading of buses will cause the short
term blockage of traffic, and this situation is modeled in DYNASMART according to the
locations of bus stops. |If the location of the stop is near an intersection, one lane of
outflow capacity will be dropped. If the location of a bus stop is in the middie of a block,
the short term blockage will be simulated as a short term incident. The blockage timeis
defined as the average dwell time ( user needs to include the average additional time loss
due to starting.) According to the 1985 HCM, where the buses stop in alane that is not
used by moving traffic (a curb parking lane, or abus bay), the time loss to other vehiclesis
approximately 3 to 4 seconds per bus. The blockage time of midblock curb stop is set as 4
seconds, but can of course be readily changed to reflect actua conditions.

The above modelling of bus operationsis not limited to buses, but may also be applied
to any other type vehicle with fixed route and schedule.

24



OTHER CONSIDERATIONS
Driver Compliance Factors

Driver compliance factors are modeled as part of the user decisions component.
Several possible rules can be postulated for this behavioral process, and will eventually be
developed based on empirical experimental evidence. The ability of DY NASMART to
explicitly model multiple user classes on the basis of behavioral provides the necessary
flexibility to accomodate awide range of possible compliance rules.

Output Information
For different analyses, three levels of output can be obtained from DY NASMART:
1. Overall System Performance (the statistics are also reported for different user classes)
. average overal travel time
. average travel (moving) time
. average entry queue time
. average stop time
. average travel distance
. congestion index
. Simulation summary report
2. Selective Information
-Link
average speed
averagedensity
average end queue
total number of vehicles passed by
. Vehicle
behavior attributes
travel time
travel distance
travelled path
3. Detailed Information
vehicle trgjectories
signd timing
pathinformation
concentrationprofiles
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Detailed input information and sample output information are included in Appendix A.

Graphic Display Systems

An experimental graphic display system has been developed to assist in the display of
DYNASMART outputinformation. The graphic system creates a network graph with
detailed characteristics, and displays static and dynamic information from DY NASMART
on the graph. The graphic system provides the following features:

1. adding and ediiting traffic road network elements,

2. displaying dynamic simulation results from DY NASMART,
3. displaying the path data, and

4. displaying vehicletragjectoriesin the traffic road network.

This program requires an X-window VI 1 R4 server and a C compiler. It was
originaly developed on a Sun Sparc workstation; however, it is portable to most
workstations. With pull down menus and easy-to-use dialog boxes, the system is a
convenient tool to view the complicated simulation results.

There are four windows in this system as shown in Figure 4. The menu bar window
consists of al the available choices: File, Edit, Show, Sim, and Options. The network
display window displays the whole network, with circles as nodes and lines as links. The
dialog window displays the information request from the computer or shows some
instructions for users. The data and infor mation window displays the static and dynamic
traffic smulation data.

MENU BAR
DIALOG
NETWORK DISPLAY BOX
REGION
DATA
&
INFO
LEGEND BOX

Figure 4. Configuration of the Graphic System
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CHAPTER 3
COMPUTATIONAL ISSUES AND NUMERICAL EXPERIMENTS

INTRODUCTION

Numerical experiments are conducted to illustrate different functional features of
DYNASMART. These experiments, performed on a hypothetical test network as well as
the Austin core network, demonstrate various aspects of DYNASMART. Since
DYNASMART is primarily a descriptive analysis tool, detailed input data sets need to be
prepared for proper execution. Data sets are described in a separate Technical Report
(Mahmassani et al., 1993) and illustrated in Appendix A. Due to the critical role of
execution timein real-time control environments, techniques for minimizing execution time
are explored in DYNASMART. Some optimization techniques and features of the CRAY
FORTRAN (CFT77) language are reviewed.

This chapter contains four sections. The first section is concerned with computational
issues, particularly code optimization techniques for FORTRAN program codes. This
section may be skipped by the reader interested only in the substantive traffic aspects of
DYNASMART with no loss of continuity. The next section presents numerical
experiments on DYNASMART, to explain and illustrate various aspects of the program.
The third section discusses computational performance of DY NASMART. Extensions and
applications are briefly discussed in the last section.

COMPUTATIONAL ISSUES

In this section, some FORTRAN program optimization methods are reviewed and
discussed. DYNASMART is written in CRAY FORTRAN. To efficiently utilize the
FORTRAN optimization techniques, some important aspects of CF77 and CRAY YMP are
listed asfollows:

1. Compiler CF77

The CF77 compiling system compiles FORTRAN that conforms to the American
National Standards Institute (ANSI) standard, often called FORTRAN 77. The CF77
supports extensions to this standard to offer broader capabilities and to take advantage of
the features of CRAY. The CF77 compiling system, composed of FPP, FMP and the
CFT77, provides different level of parallel abilities, such as autotasking, and microtasking.
Some features of FORTRAN 90 and FORTRAN D are also included in the CF77.
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2. CRAY YMP
-6 nsclock cycle
-8CPU
- 64 megawords ( 512 megabytes) of high speed memory
- 512 megawords(4 gigabytes) of SSD ( Solid State Storage Disk)
- 55 GB CRAY high Speed disk storage
- UNICOS 6.1 operating system

Types of Optimization

The purpose of optimization is to produce computer code which can be executed in
lesstime. This can be achieved by different ways, such as agorithm optimization and code
optimization. Algorithm optimization isto select or develop an algorithm that offersthe
best possibility of optimum execution within the hardware and software constraints. Code
optimization consists of making modifications to an existing code to improve execution
time. Optimizing execution of a particular program depends on several factors: utilities
available under the compiler and operating system, and the type of code (for example,
computation-intensiveversus|/O-intensive code).

Parallel Programming on CRAY YMP

CRAY YMP has different levels of parallel processing capabilities in both hardware
and software. The evolution of CRAY parallel processing software has followed three
implementation levels. macrotasking, microtasking and autotasking. At the macrotasking
level, programmers need to modify their code to exploit parallelism by the insertion of
library calls provided by CRAY . Microtasking, which inherits the power of macrotasking
uses compiler directives instead of library function calls. The most recent implementation,
autotasking, combines the best aspects of microtasking with automatic compiling process.
In addition, autotasking can exploit parallelism at the Do loop level without extending to
subroutines boundaries. DY NASMART fully utilizes autotasking and microtasking within
program codes. According to CRAY (SG-3074, p.4, 1990), the goals of autotasking can
be summarized as:
1. Detect parallelism automatically and exploit the parallelism without user intervention.
2. Define a syntax by which parallelism is expressed.
3. Define the scope of variables when transforming a program to exploit parallelism.
4. Provide asimple command line interface to autotasking.
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FORTRAN Optimization Guidelines

Even with powerful capability of CRAY, FORTRAN codes need to be carefully
written to exploit parallelism at the compiler and machine levels. Numerous techniques
have been proposed to speed up FORTRAN program codes with CRAY vector and parallel
abilities. However, the critical problem is to identify and remove data and control
dependencies in program codes. Various such techniques have been applied in the
development and prototyping of DY NASMART, and are briefly reviewed in this section.
Theintent of thisdiscussion is primarily illustrative, to indicate the kinds of computational
considerationsinvolved in the development process.

Data dependence is present when the input of a particular statement depends in some
fashion on the output of another. Forms of such dependence include flow dependence,
antidependence, and output dependence (Aho et al., 1986). Detecting scalar dependencies
among statements isrelatively straightforward: it involves taking the intersection of the
corresponding IN and OUT sets (of variables read and written by the given statements,
respectively). The same strategy also works for arrays, but gives coarse dependent results.
For more accurate information, subscript analysis of array variables needs to be performed.
Testing for dependencies then involves checking whether two subscript expressions could
take on identical values during the execution of the program. Some techniquesto overcome
data dependenciesare explained later.

In the presence of complex flow control, focusing on data dependence is not sufficient
to transform programs because of the possibility of control dependence. Such dependence
exists between two statements when the execution of one can prevent the execution of the
other.

Generally speaking, FORTRAN statements can be classified into four groups (Allen et
al., 1983):

1. Action Statements -- statements that cause some change in the state of the computation
or produce some important side effect. Examples : assignment, read, write, call.

2. Branch Statements -- statements that make an explicit transfer of control to another
location in the program. Examples: go to.

3. Iterative Statements-- statements that cause another statement or a block of statements
to beiterated. Example : Do loop.

4. Placeholder statements-- statements that take no action but can be used as
placeholders for the computation. Example : continue statement.
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Control dependence takes place in branch statements, which transfer control to another
statement. For the purpose of analysis, branches are categorized into three types.

1. Exit Branch: a branch that terminates one or more loops, asin

DO 100 | = 1,100
IF(S1) GOTO 200
100~ CONTINUE

200 CONTINUE

2. Forward Branch: a branch whose target occurs after the branch but at the same loop
nesting level.

DO 1001 =I,10
IF(S1) GOTO 100
2

S
100 CONTINUE
3. Backward Branch: a branch to a statement occurring lexically before the branch but at the
same nesting level, asin
10 S
2
IF(S3) GOTO 10

In accordance with this classification, |F converson uses two different
transformationsto eliminate brancheswithin the program:

1. Branch Relocation

Branch relocation moves branches out of loops until the branch and its target are
nested in the same number of DO loops. This procedure converts each exit branch into
either aforward branch or a backward branch.

2. Branch Remova
Branch removal eliminates forward branches by computing guard expressions (a
Boolean expression which represents the conditions under which the statement is executed)

for action statements under their control and conditioning execution on these expressions.

Further techniques can befound in Allen et al. (1983).
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Techniques and algorithms for code improvement on the basis of data flow
information can be found in Aho et al. (1986). These techniquesinclude global common
sub-expression elimination, copy propagation, code motion, and elimination of induction
variables. Some practical examples are described in Brawer (1989). A common example
of adata dependency isasituation in which avariable (scalar or array element) assigned in
one iteration of aloop isread in another iteration, e.g:

do i=l,n
sum = sum +a(i)
end do

Data dependencies complicate the parallel execution of programs as they normally
require that the statements of the loop be executed in a particular sequential order. Some
techniques and examples to eliminate data dependencies are described hereafter (these may
be skipped by the reader with no loss of continuity).

Induction Variable

¢ assignx(4*i)=a(i) c -- rewrite

integer mKk,|I m=0

real x( 1 000),a( 1000) k=4

k=4 doi =l, 1000

m=

doi =1,1000 m=i*k
m=m-+k X(m)=a(i)
x(m)=a(i) enddo

enddo

In general, loops with data dependencies will have to be transformed into aformin
which the dependencies do not exist. In the above case, the transformed version
substitutes a multiplication for an addition.

Forward Dependency

¢ forward data dependency
integer i
real x(1001)
do =11000 () is asigned ts vt e it
X(H)=x(1+ ~ X(1) Is assigned Its value arter It IS
end do -- read

¢ incorrect parallel code c parellel code
id = process-fork(nproc) ~1d = process-fork(nproc)
doi=l +id, 1000,nproc do i=I+id,1000,nproc

x(i)=x(i+) xold(i) = x(i+l)
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end do end do

call barrier() call barrier( )
doi =1+id,1000,nproc
x(i)=xold(i)
end do

In this example, anew array is used to avoid data dependency.

Backward Dependency

Backward dependency is a less tractable kind of data dependency, and requires more
advanced techniques to affect dataflow. Thereis no simple way to parallelize the
following loop except reformul ate the problem.

¢ example of backward dependency

integer i
real a,b,x( 1000)

do i=2,100
x(i)=a*x(i)+b*x(i-1)
end do

Break Out of Loop
Some programs manipulate the elements of an array one-by-one so long as some
condition holds, then terminate the manipulation when the condition is no longer true.

¢ examplefor break out of loop
integer a( 1000),n,predicate,i

© pradicate(a) o0, 1) th
if(predicate(a(i)) .eq. 1) then
P call transfc?ﬁm(a(i))

else

goto2
endif
end do

2 continue

SplittableL oops

Certain kinds of data dependencies can be removed by creating two or more loops
from a single loop.
¢ example of splittable loop

inti,nk
real a( 1000),b(1000),c( 1000),f(2000),d
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do i=l,n _ . _
géi? = b I|_)1J)r c(i)*d + f(i+k)
end do
If the statement c(i)=a(i- 1) is changed to c(i)=y(i), there is no longer data dependency.
Sometimes this kind of dependency can be avoided by splitting into two loops without data
dependency.

¢ second example c rewrite
% )0 + o) *d + f(i+k) S&‘f 'e[b
3?%3232% " UC) = ai+)
end do end do
doi=l,n
ai)=

NUMERICAL EXPERIMENTS

The numerical experiments described in this section are intended primarily to illustrate
some basic aspects of DYNASMART. As a genera simulation-assignment model,
DYNASMART can simulate a variety of scenarios according to specified variables. The
series of experiments described hereafter also provide insights into network performance
under real-time information for different behavioral assumptions, as well asinto the
computational characteristicsof the program.

Description of the Test Network

Figure 5 depicts the network used in the first set of numerical tests. It consists of a
freeway surrounded by a street network. The network consists of 50 nodes and 168 links.
All streets are two-directional (represented by two directiona links in the graph) and have
two lanes in each direction except the entrance and exit ramps that connect the street
network to the freeway; these are directed arcs with one lane as shown in the figure. There
are 11 on-ramps and off-ramps that connect the freeway with arteries. All other
informationisgivenin Table 2.

Demand Levels and Behavioral Experiments

Similar experiments were performed for different scenarios and results are reported in
Mahmassani et a. (1992) and Mahmassani and Jayakrishnan (1991). These experiments
are primarily included for illustration purposes. The simulation experiments were
conducted in two parts. The first part examines system performance under different
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demand levels. The second part investigates sensitivity of the system’s performance, under

the information strategy, with respect to two principal factors. (1) thefraction of userswith

access to information, and (2) the mean relative indifference band, which captures the
propensity of users to switch in response to information. Two fundamental assumptionsin
these experiments arc asfollows:

1. All non-equipped vehicles are assumed to have current information before their trips
(through radio or TV) , and thus will be assigned to the current best path. After this
assignment, they are not alowed to change their routes during the trip.

2. The signal control parameters are not changed during the simulation. The green time
isallocated according to arrival flow rates and queue lengths based on preliminary tests.

DemandLevels

The base case loading pattern is set to follow atypical peak-period pattern with rapid
build-up and subsequent decrease of the loading vehicles. The vehicles are generated over
a 35-minute period and statistics are accumulated for vehicles generated after the first five
minutes (initialization period). The average number of generated vehiclesis about 367
vehicles per minute, the average trip timeis about 3.4 minutes and the average trip distance
is 1.32 miles. The number of vehicles and loading pattern are shown in Table 3. The total
number of vehiclesis about 11,234 which is not expected to cause significant congestionin
the test network. The total demand is subsequently multiplied by a factor to examine the
variation of trip time with increasing demand. All the parameters are fixed at this stage.

Fraction of Equipped Vehicles

To examine the effect of this fundamental parameter in the large-scale deployment of
any in-vehicle information system, DY NASMART allows users to define different
fractions of vehiclesin different classes. Output information will be generated by vehicle
class. In these experiments, three levels are considered 0.0, 0.50, and 1.00. Information
availability statusisassigned randomly and independently to each vehicle asit is generated,
according to the specified fraction.

Mean Relative Indifference Band
The quantity nj in the boundedly rational behavioral rule governs users responses to

the supplied information and their propensity to switch. Asnoted earlier, wetreat it asa
random variable; when generated, a user is assigned randomly and independently avalue
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Figure 5. The Test Network Structure
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Table 2. Characteristics of the Test Network

Simulationlnformation
start up time : 5 minutes
eriod of interest : 5- 30 minutes
ax simulation time : 150 minutes
Network :
Overdl Data
number of nodes : 50
number of links: 168
destinations : 10 (2,5,13,18,25,30,35,36,37, and 44)
demand zones : 10 (1 to 10, each zone covers 3-4 nodes)
ramp control : 11 on ramps

Jam density = 160 vehicles/mile
Maximum density = 260 vehiclesmile
arteria street
length : 1/4 mils
number of lanes: 2
velocity : 30 miles/hr
freeway
length : /4 miles
number of lanes: 2
velocity : 55 mph
on-ramp and off-ramp
length : /4 mils
number of lanes: 1
velocity : 30 miles/hr
HQOV links
length : 1/4 miles
number of lanes: 1
velocity : 55 mph

Link

Signal Data

No-control : 16

Retimed control : 26
2-phases operation
greentime: 25 seconds
amber time : 5 seconds

Actuated Signal Control : 8
2 phases operation
min green time : 10 seconds
max green time: 25 seconds
amber time : 5 seconds
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Number of Vehicles

Table 3. The Loading Pattern for the Base Case

l Cumulative #

I Time Interval | # of Vehicles
5 | 1205 1205
10 2077 3282
15 2805 6087
20 2142 8229
25 2107 10336
30 855 11191
35 43 11234

300Q

2500,

20004

Time Interval (in minutes)
Figure 6. Vehicle Generation Pattern
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for nj. For convenience, nj is assumed to follow atriangular distribution, with mean n and
range of n/2. The minimum improvement tj in the switching rule expression is taken to be
Identical across users. In these experiments, the n isset to 0.2 and t is equal to one
minute, unless noted otherwise.

Results

Effect of Demand Levels

The purpose of these experiments is to observe the variation in system performance when
the demand is increased. None of the vehicles are assumed to be equipped with real-time
information systems (0% market penetration). The variation of averagetrip time (ATT),
average stopped time (AST), and average trip distance(ATD) are reported in Table 4. The
variation of the systemwide average trip time and average stopped time is shown in Figure
7. As expected, the average trip time increases when the demand isincreased. The average
trip time for demand factor 2.2 is 15.0 minutes which is four times more than the base case
(3.51 minutes). In Figure 7, we aso observe that the ATT and AST are highly positively
correlated, and that the AST also increases rapidly with increasing congestion. The
variation of ATD is shown in Figure 8. The increase in trip distance is relatively small in
magnitude. The ATD for the 2.2 demand level caseis 1.44 miles, that is 9 % more than the
base case (1.32 miles).

Effect of In-Vehicle Information and Behavioral Scenarios

The experiments illustrate the behavioral modelling capabilities of DYNASMART. The
results of myopic switching and 0.2 indifference band are reported in Tables 5 and 6,
respectively for a 50% market penetration level (equipped vehicles). Similar results were
reported in Mahmassani et a (1992) and Mahmassani and Jayakrishnan (1991). In the
myopic case (relative indifference band = 0.0 and minimum bound = O.0), equipped
vehicles always switch to an alternate path if it offers an improvement in estimated travel
time, no matter how small its magnitude. In Table 5, the difference between equipped and
non-equipped vehicles becomes larger for higher demand levels. For example, the relative
benefit to equipped vehiclesis -0.6% for the base case and 9.4% for demand factor 2.0
case, as shown in Figure 9.
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Table 4. System Performance Statistics for Different Demand Factors

Demand Factor 1 1.2 1.4 1.6 1.8 2 2.2
Vehicles 11234 | 13589 | 15565 | 18012 | 20064 | 22347 | 24789
Non-tagged 1248 1528 1741 2104 2326 2654 2932

Tagged-Vehicles 9986 | 12061 | 13824 | 15908 | 17738 | 19693 | 21857
ATT (in minutes) 3.51 4.12 5.34 7.16 9.88 12.18 | 15.03
AST (in minutes) 0.9 1.4 2.39 3.83 5.99 7.62 9.87
ADT (in miles) 1.324 | 1.333 | 1.356 | 1.379 | 1.397 | 1.427 1.44

* Tagged vehicles are those generated between minute 5 and minute 35 over the simulation
and for which statistics are accumulated.
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Figure 7. Variation of Average Trip Time (ATT) and Average Stopped Time
(AST) for Different Demand Loads

If all equipped vehicles with the same destination switch to the same route, the route is
not likely to remain a superior one to use. The variation of ATT and AST compared with
the origina case (0% market penetration, or no information) is shown in Figures 10 and 11
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respectively. In Figure 10, ATT is the curve for the case without real time information (no
equipped vehicles in the network), and ATT-1 is the curve for the case with 50% market
penetration. We observe that the gap between ATT and ATT-1 becomes larger when the
demand factor reaches the 1.6 level, suggesting that the real-time information is more
effective in this network when traffic conditions are congested. The comparison of the

average stopped times is shown in Figure 11, and exhibits similar patterns.

1.46
;,,; 1.44-
g
g 142-
¥
E 1.404
Z
= 1387
»
s
= 1.36-
[-}]
V4] o
s
S 1.34-
<
1.32 . ' . . . ' .
10000 15000 20000 25000 30000

Number of Vehicles
Figure 8. Variation of Average Travel Distance (ATD)

Two important parameters in the behavioral rule considered here determine how
drivers respond to real-time information. For 1 of 0.2 and 7 of one minute, the benefit of
equipped vehicles over non-equipped vehicles is shown in Figure 12 (which is similar to
Figure 9 for myopic switching). When demand in the network is low, the benefit is
negative, indicating that switching under this rule does not provide any improvement.
However, the benefit is significant as the demand factor reaches or exceeds 1.6, a
reasonable congestion level in the test network.
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Table 5. System Performance Statistics for the Myopic Case

Demand 1 1.2 1.4 1.6 1.8 2 2.2
Factor

ATT 3.37 4.06 4.82 6.75 8.12 10.57 13.9
(in minutes)

non-equipped 3.36 4.09 483 6.95 8.31 11.09 | 14.33
equipped 3.38 4.02 4.81 6.54 7.93 10.05 | 13.48
AST 0.79 1.34 1.96 3.48 4.6 6.2 8.47
(in minutes)

non-equipped | 0.78 1.37 1.97 3.64 4.77 6.63 8.83
equipped 0.8 1.32 1.94 3.32 4.44 5.77 8.1
ADT 1.321 | 1.335 | 1.343 | 1.374 | 1.386 | 1.413 1.45
(in miles)

non-equipped 1.32 1.341 1.34 1.373 | 1.389 | 1412 | 1.446
equipped 1323 1329 1346 1374 1383 1414 1453

Table 6. System Performance Statistics for

the 0.2-band Case

Demand 1 1.2 1.4 1.6 1.8 2 2.2

Factor

ATT 3.37 4,05 491 6.8 8.62 11.81 | 14.33
(in minutes) - ——

non-equipped 3.35 409 | 5 7.13 896 . 1241 . 14.96
equipped 3.39 4 4.82 6.47 8.28 11.22 13.7
AST 0.78 1.33 2.02 3.55 491 7.62 9.21
(in minutes)

non-equipped  0.78 1.37 2.1 3.85 5.22 8.14 9.83
equipped 0.78 1.28 1.95 3.26 4.61 7.09 8.59
ADT 1.318 | 1333 | 1.346 | 1372 | 1.418 | 1.396 | 1.454
(in miles)

non-equipped | 1.311 1334 | 1.353 | 1.373 | 1.414 | 1.394 | 1.444
equipped 1.326 | 1332 | 1.339 | 1372 | 1.421 | 1.397 | 1.463
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Figure 9. Relative Benefit (in terms of travel time savings) of Equipped
Vehicles over Non-Equipped Vehicles under Myopic Switching Rule

Table 7 reports summary statistics on the switching activity. Vehicles with different
numbers of switches are reported and the percentage of switching for equipped vehicles is
given in the last column. It is interesting that in the myopic cases almost all vehicles make
at least one switch, and the percentage of switching is about 90% for all demand levels.
The 0.2-band case gives a more reasonable explanation. The percentages for the demand
levels considered are 11.77%, 27.47%, 47.49%, 62.29%, 67.77%, 72.90% and 67.66%.
While the value of the relative indifference band can be specified from 0.0 to 1.0 in
DYNASMART, additional empirical support from behavioral research is necessary to
provide definitive values for such models.

Multiple User Classes

To illustrate the capability of DYNASMART to model multiple user classes, four
classes of vehicles are specified for the same base scenario considered earlier:
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CLASS 1 : non-equipped passenger car, 40%
CLASS 2 : non-equipped truck , 10%
CLASS 4 : equipped passenger car, 40%, and
CLASS 5 : equipped truck, 10%.

All the equipped vehicles have a 0.2 relative indifference band and 1.0 minimum
bound. System performance measures, namely the average trip time, average stopped
time, and average trip distance are reported in Table 8. The overall average trip time for the
MUC case is much worse than the original case as shown in Figure 13. From Table 8, we
can see that CLASS 2 always experiences the longest travel time, and CLASS 4
experiences the shortest travel time. The percentages shown for each class in Table 8 are
relative to the corresponding overall average values. The average stopped time for trucks is
greater in relative terms (to the overall average) than the average trip time.
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Figure 10. Variation of Average Trip Time for No Information Base Case
and Myopic Switching Case
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Table 7. Comparison of Route Switching under Myopic Rule Case and 0.2-
Band Switching Rule

Demand Indiff Number of Number of
Switches
Factor Band 0 1 2 3 4 5-8| Vehicles | % of switches
1 0 130 737 1173 1241 866 721 4868 97.33
0.2 4295 537 35 0 1 4868 11.77
2 0 205 967 1735 1532 981 612 6032 96.60
0.2 4375 1351 259 44 3 6032 27.47
3 0 236 1239 2039 1723 1112 562 6911 96.59
0.2 3629 2277 791 1/8 27 9 69il 47.49
4 0 408 1846 2401 1805 972 438 7870 94.82
0.2 2968 3057 1386 375 72 12 7870 62.29
5 0 546 2376 2819 1921 909 315 8886 93.86
0.2 2864 361 1779 507 154 21 8886 67.77
6 0 444 2218 3021 2278 1226 657 0844 95.49
0.2 2668 4108 2191 721 138 18 0844 72.90
7 0 1244 3887 3382 1616 565 231 10925 88.61
0.2 3533 4428 2310 551 91 12 10925 67.66
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Table 8. System Performance for Multiple User Classes

Demand Ave. Trip Ave. Stop Ave. Trip

Time Time Dis.
Factor (in minutes) % (in minutes) % (in miles) %

| AVERAGE 3.8 1.23 1.326
CLASS-1 3.66 96.32 1.08 87.80 1.327 | 100.08
CLASS-2 4.62 121.58 2 162.60| 1.339 |[100.98
CLASS-4 3.62 95.26 1.05 83.37 1.32 99.55
CLASS-3 43 113.16 1.73 140.65| 1.329 [100.23

2 AVERAGE 4.53 1.81 1.331
CLASS-1 4.45 98.23 1.73 95.58 1.328 99.77 |
CLASS2 | 5.22 115.23 2.48 137.02] 1.338 [100.53
CLASS-4 4.32 95.36 1.6 88.40 1.338 [100.53
CLASS-3 5 110.38 2.32 12818 1.305 98.05

3 | AVERAGE 6.07 3.07 1.357
CLASS-1 5.96 98.19 2.94 95.77 1.358 | 100.07 |
CLASS-2 6.92 114.00 3.04 12834 1.341 08.82 |
CLASS4 5.8 95.55 2.8 91.21 1.358 | 100.07 |
CLASSS 6.79 111.86 3.77 122.80| 1.362 |100.37

4 AVERAGE 8.29 4.84 1.384
CLASS-1 8.25 99.52 4.76 98.35 1.382 99.86
CLASS2 9.9 119.42 6.4 132.23 1.38 99.71 |
CLASS-4 7.76 93.61 4.34 89.67 1.384 [ 100.00
CLASS-3 8.89 107.24 5.5 113.64] 1.397 [100.94

3 AVERAGE | 10.18 6.35 1.383
CLASS-1 10.24 [ 100.59 6.31 9937 1.384 |100.07
CLASS-2 1232 [121.02 8.28 130.39| 1.407 |10L.74
CLASS4 9.34 91.75 5.66 89.13 1.377 99.57
CLASS-3 11.06 |108.64 7.35 115.75 1.377 99.57 |

6 |AVERAGE| 14.89 10.12 1.429
CLASS-T 15.03 [100.94| 10.11 99.90 1.421 99.44
CLASS-2 16.87 |113.30| 12.18 [120.36 1.39 97.27 |
CLASS4 13.92 93.49 9.22 O1.11 1.442 | 100.91
CLASS-5 1628 | 109.34| 11.67 |115.32| 1.445 [101.12

7 |AVERAGE| 23.06 17.08 I 1.502
CLASS-1 23.8 103.21[ 17.14 [100.35| 1473 98.07
CLASS-2 28.42 | 123.24| 21.36 |125.06] 1.509 |100.47
CLASS-4 21.84 9471 15.44 90.40 1.511 | 100.60
CLASS-5 25.79 |111.84| 19.18 [112.30] 1.573 |104.73
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Bus Operations

Another special feature of DYNASMART is to simulate buses in a network; however,
this ability can be extended to any other vehicle with a fixed departure time and a predefined
path. The input information was described in the previous chapter's section on bus
operations. A simple case with 18 buses generated within a 30-minute period, over three
predefined paths is tested. The average dwell time of each stop is 60 seconds, and all stops
are assumed at the near side of blocks. These buses are operating under the case with a
demand factor of 2.2. The average trip time is 16.16 minutes compared with 15.03
minutes for the no-bus case reflecting the increase in travel time due to blockage associated
with bus operations. A typical bus trajectory is given in numerical form as follows :
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Veh(# tag inf 0 D ST TT):23154 2 0 1 25 25.00 20.52
node- sequence 2 a 14 20 26 25

cumul ative TT 3.30 13.90 15.90 17.40 19.10 20.52

Travel Tinme 3.30 10.60 2.00 1.50 1.70 1.42

Stop Tinme 3.30 8.72 1.24 1.08 1.28 1.00

Veh(# tag inf 0 D ST AT TT):23169 2 0 18 25 25.00 32.92
24 30 29 34 33 32 31 25
5.10 6.52 24.70 26.40 27.72 29.50 31.50 32.92
5.10 1.42 18.18 1.70 1.32 1.78 2.00 1.42
5.10 1.00 17.78 1.17 1.00 1.38 1.58 1.00

Veh(# tag inf 0 D ST AT TT): 23173 2 0 26 2 25.00 24.12
31 25 19 13 7 1 2
9.00 12.30 la.50 20.00 21.32 22.72 24.12
9.00 3.30 6.20 1.50 1.32 1.40 1.40
8.90 2.47 4.76 1.08 1.00 1.00 1.00

COMPUTATIONAL RESULTS
This section discusses the conput at i onal  performance of DYNASMART, whichisan
important element in view of itseventual usein areal-timeor quasi rea-timeenvironment.

Performance M easurement

Severd techniques have been applied and tested to analyze and improve the program
code. The performance utilities on CRAY are adapted to generate more detailed
information to identify the most time consuming components of the program. Two major
utilities are used to detect the most time consuming parts : FLOWTRACE and PROF.
FLOWTRACE measures the execution time of subroutines, and PROF is able to generate
information about the time spent in each loop and in each statement.

Computational Results for the Small Network
Execution Analysis of Subroutines

The code execution analysis for the small network is discussed in this section. Table 9
provides representative results on the computational intensity of the program routines as
found in a 74.5 minute ssmulation with 20,064 vehicles. There are 10 destination nodes in
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this network, and the multiple-user classes K-shortest path subroutine is used. Thetime
interval for calculating K-shortest paths is two minutes (i.e. 20 smulation time steps), and
the path file is updated for every simulation time step (6 seconds). The execution time
analysis at the subroutine level generated from FLOWTRACE includes the total time (in
CPU seconds), number of calls, average time for each call, percentage of total, the
accumulative percentage. In this case, with autotasking and some microtasking directives
invoked the total execution time is about 122 seconds. All the subroutines are explained as
follows:

COMBINEDLABEL : combine and update multiple path labels for each user class
PARTCO : the main traffic simulation which performs link movement and node transfer
GETLINK : behaviora component, which provide the next link on the path
KSHORTESTPATH : K-shortest path bound calculation

PENCAL : movement penalty calculation

MAIN : the main control program which includeinput and output statement
BUILDPRIORITIES: build priority for COMBINEDLABEL

ADJUSTAT : adjust the saturation flow rate according to the left-turn ratio
KSHORTESTPATHC : K-shortest path calculation

LABELSUPDATE : update the path label after the KSHORTESTPATHC
INTEGRATEIT : integrate the path to an unified structure

LEFTVAL : evaluate the left-turn capacity according to the current information
PRETIME : calculate the signal cycle for pretimed control intersections
INITIALIZEAR: initialize the array bound before KSHORTESPTAH calculation
SIGFUN : the fork component for signal control calculation

BEGINRT : theinitial path assignment

ACTUATED : actuated signa control calculation

OUTPUT : output system performance for multiple user classes

NOCONTROL : process intersection control without signs and signals
INITIALIZAARRAYS : the initiaization of KSP arrays

LEFTCON : the interface for calling KSP calculation.

INCIREAD : read incident data

RAMPFUN : process ramp functions

INITIALIZEPRMTS: theinitia set up for KSP Calculation.

49



Table 9. Execution Output from FLOWTRACE

Route Name TOTTIME | #Calls Avg. Time | Percentage | Accum
%
(in seconds) (in seconds)

COMBINEDLABEL 5.35E+01 19020 2.81E-03 44.01 44.01
PARTCO 2.35E+01 644 3.65E-02 19.33 63.34
GETLINK 1.10E+01 | 1112605 9.87E-06 9.04 72.37
KSHORTESTPATH 9.95E+00 660 1.51E-02 8.18 80.56
PENCAL 9.86E+00 645 1.53E-02 8.11 88.67
MAIN 2.79E+00 1 2.79E+00 2.3 90.97
BUILDPRIORITIES 2.66E+00 990 2.69E-03 2.19 93.15
ADJUSTSAT 2.42E+00 108360 2.24E-05 1.99 95.15
KSHORTESTPATHC | 2.38E+00 330 7.20E-03 1.96 97.1

LABELSUPDATE 1.37E+00 660 2.07E-03 1.12 98.23
INTEGRATEIT 5.81E-01 330 1.76E-03 0.48 98.7

LEFTVAL 5.72E-01 66435 8.61E-06 0.47 99.18
PRETIME 3.53E-01 16770 2.11E-05 0.29 99.47
INITIALIZEAR 2.57E-01 660 3.90E-04 0.21 99.68
SIGFUN 9.86E-02 645 1.53E-04 0.08 99.76
BEGINRT 9.46E-02 20141 4.70E-06 0.08 99.84
ACTUATED 7.02E-02 5160 1.36E-05 0.06 99.89
OUTPUT 4.62E-02 1 4.62E-02 0.04 99.93
NOCONTROL 3.61E-02 10320 3.49E-06 0.03 99.96
INITIALIZEARRAYS 3.48E-02 330 1.05E-04 0.03 99.99
LEFTCON 1.15E-02 33 3.48E-04 0.01 100

INCIREAD 2.55E-04 1 2.55E-04 0 100

RAMPFUN 1.96E-04 64 3.06E-06 0 100

INITIALIZEPRMTRS 1.52E-06 1 1.52E-06 0 100
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Table 10. Comparison of Execution of DYNASMART under Different
Optimization Options

Route Name BASE CASEA | Speed-| CASEB | Speed-

Up of Up of

(in seconds) BASE BASE
COMBINEDLABEL 5.35E+01 1.98E+02 3.70 6.23E+01 1.16
PARTCO 2.35E+01 241E+02 | 10.26 | 7.93E+01 3.37
GETLINK 1.10E+01 1.58E+01 1.44 1.10E+01 1.00
KSHORTESTPATH 9.95E+00 2.54E+01 2.55 1.01E+01 1.02
PENCAL 9.86E+00 4.35E+01 4.41 1.05E+01 1.06
MAIN 2.79E+00 5.91E+00 2.12 2.77E+00 0.99
BUILDPRIORITIES 2.66E+00 8.42E+00 3.17 2.08E+00 0.78
ADJUSTSAT 2.42E+00 7.10E+00 2.93 2.18E+00 0.90
KSHORTESTPATHC | 2.38E+00 7.04E+00 2.96 2.38E+00 1.00
LABELSUPDATE 1.37E+00 4.50E+00 3.28 1.45E+00 1.06
INTEGRATEIT 5.81E-01 3.40E+00 5.85 6.36E-01 1.09
LEFTVAL 5.72E-01 9.74E-01 1.70 5.92E-01 i.03
PRETIME 3.53E-01 1.04E+00 2.95 3.68E-01 1.04
INITIALIZEAR 2.57E-01 1.38E+00 5.37 4.04E-01 1.57
SIGFUN 9.86E-02 1.46E-01 1.48 9.83E-02 1.00
BEGINRT 9.46E-02 2.27E-01 2.40 9.38E-02 0.99
ACTUATED 7.02E-02 2.83E-01 4.03 9.00E-02 1.28
OUTPUT 4.62E-02 9.56E-02 2.07 3.89E-02 0.84
NOCONTROL 3.61E-02 8.26E-02 2.29 3.50E-02 0.97
INITIALIZEARRAYS 3.48E-02 1.38E+00 | 39.66 | 7.48E-02 2.15
LEFTCON 1.15E-02 1.22E-02 1.06 1.13E-02 0.98
INCIREAD 2.55E-04 3.05E-04 1.20 2.58E-04 1.01
RAMPFUN 1.96E-04 5.70E-03 | 29.08 3.76E-04 1.92
INITIALIZEPRMTRS 1.52E-06 1.57E-06 1.03 1.56E-06 1.03
TOTAL 121.59 565.70 4.65 186.50 1.53
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In Table 9, we see that about 57 percent of the execution time is spent on multiple user
classes path calculations for the 10 destinations network. PARTCO, the main smulator, is
about 20 percent, and PENCAL, the interface between KSHORTEST and PARTCO take
about 8 percent of execution time. For path processing, the update subroutine is three
times faster than recalculating the paths. For the behavioral rules incorporated in
GETLINK, the number of callsis 1,112,605 and takes 9% of total execution time. When
the vehicles reach nodes, GETLINK will be called to determine the next link on the path.
MAIN isthe maor input and output module, and takes about 2.79 seconds, or about 2.3
percent of the total. Note here that the output information obtained from these tests
includes only the system performance statistics, and all the time-dependent information are
not reported. All other subroutinesjointly account for less than 10% of execution time.

Different speedup comparisons are reported in Table 10, in which two cases are
compared with the previous time calculation:

CASE A : al the optimization features of the compiler are turned off (such as autotasking,
vectorization)
CASE B : without autotasking and aggressive optimization setting in compiler

The total execution time for CASE A is565.7 CPU seconds which is 4.6 times slower
than the optimal one, and CASE B is 1.5 times slower than the optimized version. The
speed up ratio of the optimized version is aso reported in column 4 and column 6. In
column 6, we can see the speed-up of optimized program is quite significant. All the
subroutines obtain |-5 times speed up, while PARTCO experiences about 10 times speed
up. In CASE B, AUTOTASKING and AGGRESS setting have been turned off. Through
the autotasking capability of CRAY, we can obtain about 1.5 speed-up for DYNASMART.

The fact that a majority of the computation time isincurred in the path processing
component is encouraging, because the present experiments included very extensive path
computations that most certainly exceed practical requirements. For instance, instead of
updating all K paths every simulation interval, the update may take place only every other
interval, thereby halving the computation associated with this task. More important, the
time frame for recomputing theK paths need not be as short asit ishere: going from 2to 4
minutes would mean a50% reduction in execution time associated with that portion.

Comparison for Different Demand Factors
Figure 14 illustrates the variation of execution time for different demand levels. When
the congestion level isincreased, the number of vehicles and simulation periods are also
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increased as reflected in the execution time. Recall that the network is simulated until all
loaded vehicles clear the network; as more vehicles are generated over the same generation
duration, congestion in the network increases and it takes longer to clear all vehicles. For
this reason, the total simulation period is longer at higher demand and so is the execution
time. The time statistics, which include two (large) time-dependent output information
files, are shown in Figure 14. These execution times are not directly comparable to those
in the previous section, because of the additional output. For instance, the execution time
for the same factor, 1.8, is now 157 which is 35 seconds more than the previous analysis,
indicating that the I/O (input-output) part can be very time-consuming, depending on how
much detailed information is requested by the user.
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Figure 14. Execution Time for Different Demand Factors

Single User Class DYNASMART Execution Analysis

In some applications involving only one class of users, it would be more efficient
computationally to execute a special version of DYNASMART with streamlined data
structures intended for a single class of users.

53



Some other specifications :

Number of Nodes : 50

Number of Links: 168

Destination Zones : 38

Destination Nodes: 38

Simulation Interval : 0.1 minutes
Total Number of vehicles: 15007
Simulation Time: 44.7 minutes
Average Travel Time: 5.05 minutes

The execution time is shown in Table 11. The single K-shortest path subroutine takes
50 percent of execution time, and PARTCO takes about 30 percent of execution time. Itis
also expected that the execution time will increase with the increase in the number of
vehicles and associated congestion levels.

DYNASMART iswrittenin CRAY FORTRAN (CFT), which is readily portable to
other environments (the code has been successfully executed on workstations). Being
written in CF177, DYNASMART can be executed on various other hosts with little
modification. The execution time for running on CRAY YMP, CONVEX, and RISC 6000
arereported in Table 12. Note that the execution time is obtained with only the overall
system performance measures output. CONVEX and RISC 6000 are two front end
machines of the CRAY inthe University of Texas System Center for High Performance
Computing (CHPC). Surprisingly, the performance of RISC 6000 is two times faster than
CONVEX machine. In these runs, the execution time on CRAY is 2-7 times faster than on
RISC-6000, with CRAY providing much better relative performance as the number of
vehiclesincreases.

Execution Analysis for the Austin Network

Although the previous test network is relatively small, the total execution time
described in the previous section provides some idea about the time spent on each
subroutine. Some of the experiments for the Austin core network (676 nodes, 1882 links,
32 destinations and 36 demand zones) without movement considerations, are reported in
Table 13. These tests are made without explicit left-turning movement penalties. There are
479 stoplyield signs and 132 signalized intersections. For atotal of 17,712 vehicles,
DYNASMART executed in 621.1 seconds for an 80-minute simulation period.
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Table 11. Execution Analysis for Single User Class Version of

DYNASMART

Routine Name | Tot Time # Calls Avg. Time Percentage
KSHORT 2.69E+01 874 3.07E-02 48.03
PARTCO 1.74E+01 446 3.89E-02 31.04
MAIN 7.04E+00 1 7.04E+00 12.58
PENALTY 1.22E+00 446 2.73E-03 2.18
INTEGRAT 1.22E+00 874 1.39E-03 2.17
ADJUSTS 6.24E-01 75096 8.31E-06 1.12
GETLINK 5.79E-01 173362 3.34E-06 1.04
LEFTVAL 3.55E-01 42465 8.36E-06 0.63
INITIALA 1.72E-01 874 1.97E-04 0.31
PRETIME 1.37E-01 11622 1.18E-05 0.24
READLEFT 9.33E-02 1 9.33E-02 0.17
BEGINRT 8.17E-02 15007 5.44E-06 0.15
SIGFUN 6.77E-02 447 1.51E-04 0.12
ACTUATED 4.70E-02 3576 1.32E-05 0.08
RAMPFUN 4.18E-02 44 9.50E-04 0.07
NOCONTROL 2.81E-02 7152 3.93E-06 0.05
LEFTCON 6.14E-03 23 2.67E-04 0.01
TITLE 3.90E-03 1 3.90E-03 0.01
Totals 5.60E+01

Table 12. Performance Analysis on Different Hosts for Single User Class
Version of DY NAS MART

Number of | Simulation Average CRAY CONVEX RISC6000
vehicles Time (in | Travel Timg (in seconds)| (in seconds) |(in seconds)
minutes) (in minutes)
15007 44.7 5.05 49 242.3 119.6
22507 67.9 9.12 65.3 438.9 244.8
30029 107.1 22.9 95.3 1029.9 703.5
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Table 13. Execution Analysis for the Austin Network without Movement
Congiderations

Number of Vehicles | Simulation Time | Average Travel Time EXEC Time
(in minutes) (in minutes) (in CPU seconds)
12431 45.2 4.77 462.4
15046 62.3 6.38 563.3
17712 81.4 7.13 621.1

Table 14 provides the representative results on the computationa performance of the
single user class DYNASMART with explicit left-turn representation in an 87-minute
simulation of the Austin network. The program is compiled with autotasking,
microtasking, aggressive, and inline insertion. The total execution time is 724 CPU
seconds on CRAY YMP. The subroutines are briefly described as follows:

LEFTCON : left-turn K-SP calculation

LABELSUPDATE : path update

PARTCOMU : the core of traffic smulation
BUILDPRIORITIES: build prioritiesfor LABELSUPDATE
PENCALSN : penalty calculation

MAINSUC : main program

INTEGRATEIT : integrate the path into a single structure
GETLINK : path selection component

ADJUSTSAT : saturation flow rate adjustment
INITIALIZEARR : initializearraysfor KSP calculation
LEFTVAL : check the left-turn capacity from the built-in tables
BEGINRTS: assign theinitial pathsto vehicles
PENCALMU : initial phase of penalty calculation

In thisanalysis, ten best paths are calculated every two minutes (20 simulation time
steps), and these paths are updated every 0.1 minute (i.e. every simulation time step). We
can see that 70% of execution is spent on LEFTCON, LABELSUPDATE and
BUILDPRIORITIES, as compared to about 11% in vehicle ssimulation. Again, this
execution time can be readily reduced by less frequent path calculations with limited loss of
accuracy. In particular, execution runs in the order of 300 seconds were obtained for the
same simulation case with path recalculation every 40 time steps and path updates every
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four time steps with very comparable overall system performance. Most important from
the standpoint of real-time system optimal (or user equilibrium or multi user class) dynamic
assignment algorithms, where DYNASMART is used asasimulator, is that execution time
for comparable runsto that above isabout 180 CPU seconds (Austin network) when the
vehicle paths are pre-specified, asthey are in the dynamic assignment algorithms presented
in the next two chapters.

Table 14. Execution Analysis for the Austin Network

Routine Name Tot Time # calls Avg. Time Percentage
LEFTCON 2.84E+02 3.90E+01 7.28E+00 39.25
LABELSUPDATE 1.46E+02 4.93E+03 2.97E-02 20.23
PARTCOMU 7.64E+01 7.70E+02 9.92E-02 10.55
BUILDPRIORITIES | 6.94E+01 1.25E+03 5.56E-02 9.59
PENCALSN 6.08E+01 7.70E+02 7.90E-02 8.41
MAINSUC 4.80E+01 1.00E+00 4.80E+01 6.63
INTEGRATEIT 2.13E+01 1.25E+03 1.70E-02 2.94
GETLINK 5.05E+00 4,80E+05 |.05E-05 0.7
ADJUSTSAT 45|E+00 1.46E+06 3.09E-06 0.62
SIGFUN 4.06E+00 7.71E+02 5.27E-03 0.56
INITIALIZEARR 2.63E+00 1.25E+03 2.11E-03 0.36
LEFTVAL 9.03E-0 1 |.I9E+05 7.60E-06 0.12
BEGINRTS 144E-0 1 7.95E+03 1.81E-05 0.02
PENCALMU 8.38E-02 1.00E+00 8.38E-02 0.01
Totas 7.24E+02 2075550 I

APPLICATIONS AND EXTENSIONS

DYNASMART provides aflexible framework to analyze traffic network performance
under real-time information, traffic control actions and user behavior strategies. In the
form described in this and the previous chapter, it simulates network conditions over a
given (peak) period on agiven day. DYNASMART is being extended along three
important dimensions: (1) day to day system dynamics and evolution, (2) rea-time
adaptive traffic control; and (3) responsiveness to road pricing options.
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Thefirst dimension is an essential one in the analysis of the effect of information, asit
considers the changes in departure time from day to day. Consideration of day to day
decisions of tripmakers (departure time and route) allows amore complete eval uation of the
evolution of aparticular system under aparticular information supply or traffic management
strategy. This capability requires the specification of appropriate decision rulesin the user
behavior component.

The second capability isto alarge extent already available, though specific control
modules need to be incorporated. More important, explicit consideration of control actions
in an agorithmic procedure jointly with routing choiceis of primary importanceto ATMS
applications.

With regard to road pricing, the structure of DY NASMART already provides the
flexibility to incorporate user response rules to congestion pricing schemes. Of course,
developing such behaviora rules requires an observational basis, presently being pursued
under a separate study.

As noted in the first chapter, one of the primary uses of DYNASMART isasa
simulator in the context of agorithmic procedures to solve for a set of paths followed by
driversin order to achieve either a system optimum or user equilibrium in a given network
with time dependent demand. These algorithms and their implementation are described in
the next two chapters.
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CHAPTER 4
THE SYSTEM OPTIMAL DYNAMIC TRAFFIC ASSIGNMENT PROBLEM

Chapter 4 introduces and details the system optimal dynamic traffic assignment
problem in the context of ATIS/ATMS applications. This chapter first presents a brief
introduction to the problem being addressed and then discusses the dynamic assignment
capabilitiesenvisaged for the ATISSATMS context. The existing literatureinthe areais
then briefly reviewed and the issues that influence the formulation of the problem are
discussed. The body of the chapter presents formulations for the problem based on
different information availability scenarios for the controller, and describes a simulation-
based solution algorithm developed for the single user class system optimal dynamic
traffic assignment problem: the modifications necessary to obtain the user equilibrium
solution are also stated. The remainder of the chapter reports and analyzes results from
experiments designed to evaluate aternative information supply strategies in the context
of ATIS operations, followed by concluding comments.

INTRODUCTION AND PROBLEM DEFINITION

Approaches incorporating advances in communication technologies, information
processing systems, electronics and automation, broadly labeled as Intelligent Vehicle
Highway Systems (IVHS), continue to generate considerable interest for their potential to
alleviate urban and suburban traffic system congestion. Advanced Traveler Information
Systems (ATIS) provide travelers with real-time information on existing traffic
conditions and/or route selection recommendations from their current location to their
destinations. Successful implementation of ATIS, especialy at high market penetration
levels, involves the dynamic assignment of vehicles to “optimal” paths to reduce overal
system user costs.

The system optimal dynamic traffic assignment problem is directly relevant to the
normative assignment problem encountered in connection with ATISATMS operations.
It addresses the problem where a central controller with known or predicted time-
dependent origin-destination (O-D) trip desires over the horizon of interest solves for
pathsto provide usersin order to attain some system-wide objectives. A system optimal
assignment does not generally represent an equilibrium flow pattern because some users
may be able to obtain (possibly very dlight) individual travel cost savings by unilaterally
changing routes. Its significance to the ATIS context lies in providing a benchmark
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against which other assignments or information supply strategies can be gauged, thereby
yielding an upper bound on the benefits attainable with real-time traffic information. In
addition, it provides a solution basis from which to obtain actua route assignments
(recommendations) to drivers, after the controller has applied certain reasonableness
constraints to individual routings (e.g. with regard to circuity or excessive trip time).

A number of factors influence system performance in the context of dynamic traffic
assignment for real-world ATISATMS systems. The fraction of users with capability for
one-way or two-way communication (market penetration) with a central controller, the
various information supply strategies or assignment rules, and the user response behavior
to supplied information are critical determinants of the particular dynamic assignment
strategy in any realistic scenario for implementing ATISSATMS. Anideal scenario from
acontroller’s perspective in the ATIS context is one where al users of the system have
full access to information, are provided route guidance instructions based on a system
optimal strategy, and comply fully with the supplied information, thereby extracting the
best possible performance from the system. This chapter defines the system optimal
dynamic traffic assignment problem and discusses the formulations and solution
agorithm developed for the single user class case.  The associated user equilibrium
assignment problem is also studied so as to derive insights into the performance of
prescriptive versus descriptive strategies in the context of dynamic traffic assignment
under in-vehicle information systems. The next chapter addresses, among others, the
multiple user class dynamic traffic assignment problem (which includes both users that
follow UE paths and users that follow SO paths) by extending the formulations and
solution methodology for the single user class problem.

DYNAMIC TRAFFIC ASSIGNMENT CAPABILITIES FOR ATIS/ATMS

As discussed in Chapter 1, two capabilities are envisaged for dynamic traffic
assignment in the context of ATISATMS operations. A normative perspective
determines a solution that seeks to achieve some overall objectives for the system. A
descriptive perspective seeks to describe the traffic conditions that will occur in a
network under a particular loading pattern. The former usually requires a capability for
the latter. User equilibrium and system optimal assignments are associated with a set of
conditions that must be satisfied by the routes followed by users in a network. An
extensive and comprehensive discussion of formulations for the SO and UE static
assignment problems is provided in Sheffi (1985). In a system optimal strategy, theaim
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Is to solve for routes that “optimize” the overall system performance, subject to
reasonableness and fairness conditions for individual users. Hence, it corresponds to a
normative perspective. A descriptive simulation-assignment capability is necessary to
perform a normative assignment and test alternative information and routing strategies.

The User Equilibrium Case

The time-dependent UE formulations are not of immediate relevance to the real-time
assignment needs in the ATISSATMS context, where the controller’ s objective is to
optimize some system-wide performance measures. The pertinence of UE to the problem
lies in its historical significance to the classical static assignment problem, where
equilibrium analyses are performed for long-term planning applications. Under UE,
which is claimed to represent a reasonable construct for user behavior, every user is
assumed to try to minimize his’/her own travel cost when traveling from origin to
destination. A Wardrop UE holds when no user can improve his’her individual cost by
unilateral route switching, and thus represents an equilibrium condition. Thereis no
empirical evidence that UE conditions actually hold in real networks, though the UE
solution is considered a reasonable and useful construct for the evaluation of long-term
capacity improvements.

Under redl-time descriptive ATIS information on network conditions, a time-
dependent UE pattern could be viewed as the result of the long-term evolution of the
system, as users somehow learn and adjust under the supplied information. However, it
isnot at all clear that such convergence would be attained under inherently dynamic
conditions (exacerbated by supplying information to users). Thusit is not known what
the UE solution may represent from the standpoint of ATIS operation and evaluation,
Actual user behavior and system performance under real-time descriptive information
may be better or worse than the corresponding time-dependent UE solution in terms of
the overall system cost. Nevertheless, a time-dependent UE pattern may be considered as
auseful proxy for a favorable scenario of long-term network performance under real-time
descriptive information.

The System Optimal Case

A SO solution, by definition, is the best one could achieve in terms of an overall
measure of performance. In the context of traffic assignment, it can be attained by
routing vehicles on the least marginal cost paths to their destinations, paths which impose
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the least penalty on the system due to vehicles traveling on them. A system optimal

assignment does not generally represent an equilibrium flow pattern, or a model of actual

user behavior, because some users may be able to obtain individua advantages simply by
changing routes, though imposing a greater marginal cost to other usersin the systemin
the process. Its significance to the ATIS context lies in the value of the SO objective
function serving as ayardstick by which other possible problem formulations as well as
simple-to-implement heuristic control schemes can be evaluated, thereby yielding an
upper bound on the benefits attainable with real-time traffic information.

In the context of real-time assignment, a controller seeking to optimize overall
system performance is constrained among others by individual considerations of
reasonableness, fairness, equity, reliability and credibility. A SO solution may not
necessarily be equitable, in that some users may be guided on to longer routes in order to
reduce the travel time for other tripmakers. Consequently, the SO solution provides only
a starting point for actually providing route guidance information. A slightly modified
strategy envisions an additional level of processing by which users are assigned paths
within a certain threshold of the best path. Previous observational work conducted in the
Austin network (Mahmassani et a, 1990) has indicated the possibility of an abundance of
“good” paths between an O-D pair. This ensures almost everyone good paths, though not
necessarily the shortest path. In addition, to the extent that one’s route assignment may be
randomized over drivers, al drivers will ultimately (i.e. in the long run) be better off, on
average.

BACKGROUND REVIEW

Dynamic network assignment is under active development, for both the user
equilibrium and SO problems. Existing formulations are not entirely satisfactory in terms
of the underlying assumptions and/or cannot be solved for realistic networks.

The bulk of the contributions to the system optimal dynamic assignment problem
have addressed the situation where known time-dependent flows are assigned from
multiple origins to asingle destination through the links of a network so asto minimize
total system cost. The first mathematical programming approach to this problem is due to
Merchant and Nemhauser (1978). Their model was formulated as a discrete-time, non-
linear, non-convex mathematical program and the corresponding algorithm solved a piece
wise linear version of it. Congestion was treated explicitly using conventional link
performance functions.
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Carey (1986) reformulated the Merchant-Nemhauser problem as a well-behaved
convex nonlinear program, which offered mathematical and agorithmic advantages over
the original formulation. Extensions to multiple destinations or multiple commodities
remain problematic because of non-convexity issues. Multiple destinations require the
models to explicitly seek to satisfy a“first-in, first-out* requirement that is essential from
atraffic viewpoint. This requirement introduces additional constraints that complicate
the formulation, and destroy many of its nice properties, as they generally yield a non-
convex constraint set (Carey, 1992).

A more recent line of work has considered constrained optimal control theory. The
O-D trip rates are assumed to be known continuous functions of time, and the link flows
are sought as continuous functions of time. Friesz et al. (1989) discuss optimal control
formulations for both system optimal and user equilibrium problems. They propose a
dynamic generalization of Beckmann’s equivalent optimization problem for static user
optimized traffic assgnment in the form of an optimal control problem. Ran and
Shimazalci (1989) used the optimal control approach to develop a genera model of
dynamic system optimal traffic assignment for an urban transportation network with
many origins and many destinations. Ran and Boyce (1993) formulated a continuous
dynamic user optimal traffic assignment model in which exit flows are treated as a set of
control variables rather than as functions, so as to overcome difficulties posed by the non-
linearity of the exit flow function for multiple origin-destination networks. Wie (1990)
extended the model by Friesz et al. (1989) to include elastic time-varying travel demand,
which leads to the implicit consideration of departure time choices. Wie also enumerates
several limitations of this approach.

Boyce et a. (1991) used the optimal control theory approach to obtain a convex
model for dynamic user equilibrium assignment by defining inflows and exit flows on
links to be control variables. They discussed a methodol ogy to solve the discretized
version of the problem using the Frank-Wolfe algorithm and an expanded time-space
network representation. However, the use of static link performance functions is a
limitation of this model as such functions do not adequately model the dynamics of
congested traffic behavior. Furthermore, the authors have not reported any
implementation of this approach even on a test network. Both Ran, Boyce and co-
workers on one hand, and Friesz, Wie and co-workers on the other, have continued to
develop the mathematical theory underlying different UE formulations and
interpretations. While these continue to advance the scientific body of work, they have
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not resulted in practical solution algorithms for general networks and have severa
essentia traffic modeling issues that remain to be solved satisfactorily.

Another direction of work with feedback regulation was introduced by Papageorgiou
et a. (1990). A multivariable feedback regulator with integral parts and a simple bang-
bang controller was developed and tested for a particular network traffic model.
However, the formulation does not establish the underlying mathematical basis with
regard to the solution properties and lacks a first-in, first-out requirement.

Ghali and Smith (1991) proposed a formulation for the system optimal dynamic
traffic assignment problem for multiple origin-destination demands in which congestion
arises exclusively at specified bottlenecks modeled as deterministic queues. A solution
procedureis proposed by analogy with the static SO problem, using marginal link costs.
Although the approach does not ensure system optimality, and has limitations due to
certain assumptions on queuing, it addresses several of the troublesome traffic modeling
issues which seriously limit the realism and validity of previous formulations. Smith
(1991) proposed a dynamic user equilibrium model for peak period traffic flows on
congested capacity-constrained urban road networks. Motivated by the first-in first-out
property for traffic, the model specifiesa*no overtaking” condition and determines the
relative priorities of vehicles at each node seeking to proceed along the various paths
containing that node based on the past history of the vehicle (represented by a binary
numbering scheme). Smith also proposed an algorithm for solving the model, although
there is no proof that the algorithm converges to an equilibrium.

In summary, the state of art is fragmented along several lines of work, none of which
is entirely satisfactory in terms of the realism of the underlying assumptions. Key
weaknesses remain in terms of representing dynamic traffic phenomena which are of the
essence in congested networks. A comprehensive review and discussion of dynamic
assignment and traffic simulation models for ATISATMS are given in Mahmassani et al.
(1992). In the next section, the principal eements of SO traffic assignment problem
formulations for ATISATMS applications are identified, along with the key issues faced
in their solution.

SYSTEM OPTIMAL FORMULATIONS - ISSUES FOR ATIS CONTEXT

This section identifies and discusses principal issues involved in formulating the
system optimal dynamic traffic assignment problem for ATISATMS applications.
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Information Available to Controller

Different scenarios are possible based on the extent and type of information on O-D
desires and network traffic conditions assumed to be available to the controller. If
complete information is available on the origin, destination and timing of al trips for the
entire duration of interest, path assignment can be made for al time intervalsin the
beginning. Partial information on O-D desires in the future can be modeled using a
rolling horizon framework, possibly in connection with a stochastic formulation in which
O-D trips are modeled as random variables. Solution of the complete information
formulation is necessary to obtain a benchmark and a lower bound on system costs for
other, partial information formulations.

Information Available to Travelers

Users with equipped vehicles are given information on the condition of the network
and/or instructions on the path to be taken to their desired destinations. In the system
optimal problem, the controller provides users with routes to their destinations. However,
compliance influences the performance of the system. Under descriptive (as opposed to
normative) information supply strategies (see Mahmassani and Jayakrishnan, 1991, for a
discussion of such strategies), system performance depends on user decisions in response
to the specific information supplied. A related (normative) problem faced by the
controller in the ATIS context is the determination of the optimal information supply
strategy, namely what kind of predicted trip times should be supplied to which usersin
order for the resulting path choices to attain certain system-wide objectives.

Evaluation of the Objective Function

The system optimal dynamic assignment problem aims at optimizing some system-
wide criterion like the total system travel time. The time-dependent nature of the
assignment considerably complicates the computation of the objective function. For
instance, the paths followed by future O-D desires are likely to share common links with
paths assigned to current trips (generally upstream), and thus influence the travel times
experienced by current assignments. The path travel times experienced by vehicles are
the net result of the complex spatial and tempora interactions taking place in the system
over aperiod of time, virtually precluding the ability to evaluate the objective function
analytically. Furthermore, the analytic evaluation of the objective function would entail
correct analytic representation of the various dynamic traffic flow phenomena (queue
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formation and discharge, congestion build-up and dissipation), atask whichisfar from
the capability of the state of the art in traffic flow modeling. For these reasons,
simulation suggests itself as a plausible candidate for evaluating the objective function.

Traffic Flow Modeling

This point follows directly from the difficulty just mentioned of correctly
representing the dynamics of traffic flow using the kind of analytic functions typically
used in static equilibrium assignment models. Furthermore, the representation of flow as
acontinuum is not appropriate in the time-dependent case. Users entering the system at
different times will experience different network conditions and will be assigned different
paths. Continuous flow does not allow for distinction of vehicles based on whether they
are equipped or not.

Path-Based and Link-Based Formulations

Invirtualy all existing traffic assignment models, static or dynamic, the link flows
are the variables being solved for. However, for the ATISATMS context, path-based
assignments are called for because of the need to provide paths to the tripmakers. The
problem with obtaining path flows from link flows using link-path incidence relationships
is that uniqueness is not guaranteed. Furthermore, the solution of path-based
formulations is likely to require partial enumeration of paths for each O-D pair, which is
computationally burdensome.

Flows on arcs and paths are mathematically related through definitional identities
known as the link-path incidence relationships. While relatively straightforward in the
static case, link-path incidence relationships are far from trivia in the time-dependent
case. In the dynamic problem, unlike flows at steady-state, vehicles assigned to a path at
agiven time are not smultaneously present on al links forming that particular path.
Therefore, link-path incidence relationships must recognize the time at which vehicles are
actualy present on alink.

Holding of Traffic

In a network, it may often be advantageous, from a systemwide total delay
standpoint, to favor certain traffic streams or movements over others (e.g. holding back
traffic at the minor approach of an intersection in favor of the major approach). Unless
otherwise specified, the solution of a SO assignment formulation may entail holding of
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traffic on one path in favor of traffic on other paths for some significant amount of time at
points where the paths overlap or intersect. In other words, vehicles may be artificially
delayed on alink for a time that exceeds what may be considered “fair” or “reasonable”.
Such a solution is probably not acceptable socially nor realistic operationally. When
traffic smulation is used to model traffic movements to evaluate network performance
for a given assignment, unintended holding is implicitly precluded, and no additional
explicit constraints are needed to take care of this problem.

First-In, First-Out Requirement

The physical behavior of traffic on a roadway link exhibits the so-called “first-in,
first-out* (FIFO) property, creating a particularly vexing difficulty in the solution of
mathematical programming formulations of the network assignment problems. The FIFO
requirement states that traffic that enters aroad at a particular time exits from the facility,
on average, before traffic which entersin later periods. While individual vehicles may
travel at different speeds and do pass each other, FIFO should not be violated when
considering travel time, averaged over areasonable number of vehicles entering the link
in agiven time interval. The problem does not arise in static assignment problems (single
or multiple destinations) nor in dynamic assignment with a single destination. However,
in dynamic assignment problems with multiple destinations, vehicles on different paths
(from different O-D pairs) who share one or more common links may be moved across
thisarc in amanner that violates FIFO, for instance, if the downstream arc along one path
is blocked but not along the other path(s). This problem arises for both SO and UE
assignment formulations. For SO problems, total travel costs could be lowered if some
commodities (e.g. traffic between given O-D pair) could be temporarily held back on an
arc, while allowing some other traffic types to proceed to downstream arcs. This form of
holding back would violate FIFO, and is not generally physically possible, especially
under congested conditions, as vehicles cannot make such “jumps’ over traffic ahead of
them.

FIFO is aserious liability from a mathematical programming standpoint. Carey
(1992) proposed possible additional mathematical constraints to impose the FIFO rule.
However, these constraints make the feasible set non-convex, destroying many of the
computational and mathematical (analytic) advantages of the formulation. Carey
suggests solving the problem without introducing an explicit FIFO restriction, then
analyzing it for the seriousness of FIFO violations. However, no explicit procedure is
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proposed for this purpose. Smith (1991) proposes a DUE assignment model which
approximately bypasses the FIFO issue.

The above issues further highlight the relative advantages of a simulation-assignment
strategy. Simulation moves vehicles based on their current location and speed, and FIFO
isimplicitly satisfied.

Temporal Issues

The treatment of time in various aspects of the formulation and solution of dynamic
assignment problems is an essential and subtle element of these problems. When time is
discretized, the size of the time interval for assignment decisions, and its relation to the
time step that may be used in the simulation of traffic movement, need to be determined.

The size of the assignment interval affects the size of the “packet” of O-D desires to
be assigned jointly. If thetime interval isrelatively large, there will be several vehicles
going from a particular origin to a particular destination in that time interval. However,
their travel “experience” in the network may not be identical as vehicles at the beginning
of theinterval may experience different time-varying traffic conditions. Assigning all of
them to the same path would be incorrect in terms of achieving the objectives. A smaller
assignment time interval implies more intensive computation, giving rise to the usual
trade-offs between computational intensity and accuracy.

Central and Distributed Control

The system optimal dynamic traffic assignment problem is a large scale optimization
problem with large memory requirements and intensive computational needs in real-time,
especially from the perspective of in-vehicle electronic navigation systems. One way of
overcoming the huge computational requirementsisto decentralize the control process.
In the distributed control scenario, local controllersin different zones of a network assign
vehicles to the network based on the local traffic conditions and information on the
network traffic conditions provided by the central controller. Hence, unless there is good
coordination in the transfer of information between zones, thiswill not |ead to solutions
as efficient as when a central controller makes decisions based on the entire network
traffic conditions. Hence, decentralized control requires a well integrated information
communication system for efficient performance. However, as stated above,
decentralized control makes the rea-time handling of information easier as local
controllers deal with a lesser amount of data. Also, the idea of local control is especialy
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appealing in scenarios with incidents. Since in general an incident is not global in nature,
local controllers can efficiently route vehicles entering the zone with incident.

Another strategy is an integrated central-local controller scheme, where local
controllers make local assignment decisions and transfer control to the central controller
when decentralized control becomes inefficient as is possible under highly congested
conditions. The central controller can then route vehicles for all O-D pairs and transfer
control back to the local controllers when global effects are less critical. The issue of
centralized versus decentralized control needs to be explored further to determine the
relative advantages of loca control in real-time assignment of vehicles. This issue is
intrinsically related to the ATISATMS control system architecture.

Link Interactions

Mathematical programming formulations generally assume that travel time on a
given link depends only on flow through that link and not on the flow through any other
link. This assumption fails in reality when heavy traffic occurs on two-way streets,
unsignalized intersections, and left-turning movements in signalized intersections. In
such cases, link interactions cannot be ignored.

Link interactions can be either symmetric or asymmetric. Symmetric interactions
ascribe identical margina effects of links flows on each of the two links to the travel time
of the other. In the static case, when link interactions are asymmetric, there is no known
equivaent minimization program that can be used to obtain the equilibrium flow pattern.
Almost al analytical models to date on dynamic assignment problems avoid considering
link interactions in their problem formulation as they lead to a much higher degree of
complexity. Even in the static case, only in the past decade have approaches like
variational inequality formulations for the asymmetric link interactions been discussed-
Fisk and Boyce (1983). Computationa aspects of this problem have been investigated by
Nagumey (1984, 1986) and Mahmassani and Mouskos (1988, 1989).

This issue reemphasizes the advantage of a simulation-based approach in addressing
the dynamic traffic assignment problem. The traffic flow simulator implicitly accounts
for link interactions when a capability for turning movement penalties is incorporated in
it, which is significant for the path processing aspects of the problem.

The above section has illustrated the difficulties involved in modeling the system-
optimal assignment problem for the ATISATMS context, and how a simulation-
assignment strategy overcomes these problems.
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FORMULATION OF THE SYSTEM OPTIMAL DYNAMIC ASSIGNMENT PROBLEM
Problem Statement

Consider a traffic network represented by a directed graph G(N, A) where N is the
set of nodes and A the set of directed arcs. A node can represent a trip origin, a
destination and/or a junction of physical links. We consider a network with multiple
origins and destinations. The time experienced by a vehicle to traverse a given link
depends on the interactions taking place among vehicles in the traffic stream along this
arc. The analysis period of interest, taken here as the peak period, is discretized into
small equal intervals t = 1,.......... , T. Given a set of time-dependent O-D vehicle trip
desires for the entire duration of the peak period, expressed as the number of vehicle trips

ritj leaving node i for node j in time slice t, Vi,je Nandt=1,........ , T, determine a time-

dependent assignment of vehicles to network paths and corresponding arcs. In other
words, find the number of vehicles fjk that follow path k = 1,......... » Kij between i and j

attimet,Vi,je Nandt=1,....... » T, as well as the associated numbers of vehicles on
each arc 1 € A over time. We consider a normative route guidance information supply
strategy, whereby a controlling agent (controller) with information on the system assigns
users to various routes in the network so as to satisfy some systemwide objectives. Three
formulations are presented in this section, corresponding to three scenarios in terms of the
extent of information available to the controller.

Information Availability Scenarios for the Controller

For a normative assignment capability, thé "ideal" scenario would be a fully
informed system, where the central controller has complete a priori information about
every tripmaker in terms of origin, destination and the timing of the trip, and uses this
information to develop an integrated scheme that assigns to each user a path to the
desired destination so as to achieve some system-wide objectives. These functional
capabilities are envisioned to be available at the so-called "coordinated stage" of ATIS
development (Mobility 2000, 1990a; IVHS America, 1992).

It is unlikely that the controller will have full information on O-D trip desires for the
complete duration for which the assignment is to be made. A more probable scenario is
one where information is available for a short duration into the future through detectors
and advance information from drivers. A rolling horizon approach with forecasted future
O-D desires is used to obtain models for system optimal assignment for this scenario.

70



An alternative scenario is that the controller has O-D trip desires only for the present
period, and future O-D desires are treated as random variables with known probability
distributions (based on historical data), giving rise to a stochastic programming
formulation of the problem. Formulations resulting under each of the above information
availability scenarios are presented next.

Definition of Variables and Notation
The following variables and notation are used in the various formulations :
i = subscript for origin node
j = subscript for destination node
n = node in the network, ne N
a = arc (or link) in the network, ae A
k = subscript for a path in the network
1T = subscript denoting the time interval in which assignment is made (i.e. departure time)
t = subscript denoting current time interval
A =length of a time interval

T' = total duration (peak period) for which assignment is to be made

r% = number of vehicles who wish to depart from i to j in period t©

r‘.t.k = number of vehicles who wish to depart from i to j in period 1 assigned to path k

L
5;?1? = dynamic arc-path incidence indicator, equal to 1 if vehicles going from i to j

assigned to path k at time T are on link a at beginning of period t, i.e.

Tta 4 e T - .. .
[ Sijk =1, if rijk is on arc a at beginning of period t
=0, if arc a does not belong to path k
=0,ift>t
=0, if r%k is not on arc a at beginning of period t]

T;ik = path travel time for vehicles going from i to j assigned to path k at time ©

x‘ifitl? = number of vehicles (i to j) assigned to path k in period T which are on link a at the
beginning of period t

dﬂli‘ = number of vehicles (i to j) assigned to path k in period Tt which enter arc a in

]
period t
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m;‘j‘l?
period t

x% = total number of vehicles on link a at the beginning of period t
d = total number of vehicles which enter link a in period t

= number of vehicles (i to j) assigned to path k in period T which exit link a in

m!2 = total number of vehicles which exit link a in period t
C(n) = set of links directed towards node n
B(n) = set of links directed away from node n

Deterministic Full Information Scenario

This formulation represents the scenario in which the central controller has complete
a priori information on O-D desires for the entire duration for which assignment is to be
made. The controller assigns to each vehicle a path to its desired destination as the
vehicle enters the network so as to optimize some indicator of system performance
subject to the applicable constraints.

In the ATIS context, this formulation corresponds to the system optimal (SO)
dynamic traffic assignment problem. The formulation incorporates dynamic link-path
incidence variables which relate path flows to link flows. The fundamental difficulty in
solving dynamic assignment problems (SO or otherwise) is that the dynamic incidence
variables are themselves a function of the assignment, giving rise to a complicated fixed-
point problem. Essentially, the resulting formulation, which involves nonlinearities in the
objective function as well as in the constraints, yields generally undesirable mathematical
properties that preclude the guarantee of global optimality. In addition, as explained in
the previous section, the dynamic link-path incidence is not trivial. In the static case,
flows assigned to a path exist on all the links along that path simultaneously, leading to
constant known link-path incidence matrix. Such an assumption in the dynamic case
would be clearly flawed, as vehicles starting along a path at a given time are not
simultaneously present on all links of the path. The incidence matrix changes
dynamically, considerably complicating vehicle conservation constraints and travel time
calculations. The advantages of a rigorous formulation using dynamic link-path
incidence relationships are offset by the difficulty and intricacies involved in attempting
to solve it.
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The formulation is detailed below :
Given:
rfj,,Vi,jandr:l, ............. ,T

Objective function:
Min. 27 34 % % @, TE)
or
. T ;o
Min. [ T(rijk), Vi k1]
Subject to:

1. r —Zkr Vij7t

ijk ’

2. Ec m'C = Eb datb | V t,ce C(n), be B(n),n#iorj

3. xta=xt-1a_,_dt-la_mt-la Vit a

4. xR=F T % 5 (. 8T, Via

ijk"ijk
5. Titjk=2tza[8§£.A], Vi kT
6. aifjtlj=f(r§k) , Vijk1ta
7. dB=% 3 5 3 dfj‘f, Vta
8. m®=3 ¥ %5 m;‘j;(a, Via
9. 1 <t

10. 8 —Oorl

ijk
11. All variables (other than a’i}‘lj) >0

There are two alternative forms for the objective function in the above formulation.
The first states that the total travel time of the assigned vehicles in the system is aggregate
of the product of the number of vehicles assigned to a particular path (from a given origin

to a given destination at a particular time) and the corresponding path travel time. This

assumption is realistic when assignment intervals are reasonably small (in which case

there are not more than two or three vehicles to a particular path from an origin to a
destination). The nonlinearity of the objective function arises from the fact that the travel

time on the path is itself a complicated non-explicit function of the number of vehicles
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assigned to the various paths of the network, via the dynamic link-path incidence.

The second form of the objective function simply states that the total travel time of
all vehicles assigned to the various paths during the duration of ATIS application is some
function of the assignment. This objective function can be evaluated by any available
means. We do it through simulation.

Constraint (1) is a definitional constraint stating that O-D desires assigned to the
various paths should sum up to the demand (conservation at the origin). Constraint (2)
states that vehicles cannot be stored at intermediate nodes, that is, the number of vehicles
exiting from al links incident on an intermediate node should equal the number of
vehicles entering al links incident from that node at any given time. Constraint (3)
represents the conservation of vehicles on a link and states that the total number of
vehicles on any link at the end of the current time interval is the net algebraic sum of
vehicles on that link at the end of the previous time period, vehicles entering that link
during the current period and vehicles exiting that link during the current period.

Constraints (4), (5) and (6) represent the time-dependent link-path incidence
relationships which fundamentally characterize the dynamic assignment problem.
Constraint (4) represents the dynamic relationship between the number of vehicles
assigned to various paths and their aggregation on links. Constraint (5) illustrates the
caculation of the path travel times using the dynamic link-path incidence variables. The
number of time steps in which the dynamic incidence variable takes a value 1 implies the
number of discrete time steps that a vehicle (or agroup of vehicles) spent in the system,
and multiplying with A gives the actua travel time in the system. One of the most
commonly used indicators of system performance is the total time spent by vehiclesin
the system, and the path travel times conveniently allow the evaluation of this indicator.

Congtraint (6) states that the dynamic link-path incidence variables are a function of
the assignment. As noted, this fundamental fact expresses the essence of the dynamic
assignment problem.

Constraints (7) and (8) are definitional constraints for the number of vehicles
entering and exiting links in the various time intervals. Constraint (9) defines temporal
correctness. Constraint (10) restricts the dynamic incidence variables to take values of 0
or 1. Constraint (11) represents the non-negativity requirement.
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Rolling Horizon Formulation

This formulation represents a more realistic scenario of the information available to
the controller. It assumes that information will be available for a“short” duration into the
future. This provides the opportunity to use arolling horizon approach with forecasted
future O-D desires. The basic idea behind the rolling horizon approach is that current
events will not be influenced by events “far” into the future. In the context of the ATIS
problem, this is analogous to stating that vehicles currently assigned will not be
influenced by vehicles assigned “far” into the future as the currently assigned vehicles
will probably be out of the system by that time. The stage length h in Figure 15 depicts
that length of time (its value in actua problemsis network specific). The roll period |
represents the short duration into the future for which O-D desires are available with
reasonabl e certainty. To make an assignment of vehiclesto various paths for the current
period, the controller requires knowledge of O-D desires for the rest of the stage length as
these O-D desires are expected to influence current assignments. These O-D desires may
be forecasted based on historical dataand current information. The O-D desires beyond
the stage length h are assumed to be zero. The situation is now analogous to the complete
information availability scenario, abeit, only for the duration covered by the stage length
h. The system is solved for optimality only for the duration of the stage length and O-D
desires for the roll period (which are known with certainty) are assigned to the paths
determined. The time frameis now “rolled” forward by alength equal to the roll period
and the above process is repeated till the end of the duration for which ATIS is applied to
the system. Hence, a series of optimizations are performed till the planning horizon is
covered. The formulation is illustrated below :

| (roll period)
| |

T T T 7

7 b

N N S W |

N
N

h (stage length)
Figure 15. Rolling Horizon Approach
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£ = The roll period(in number of time steps)

h = The stage length(in number of time steps)
¢ = The current stage number

Given:

1. r:; r;k, Vijkandt=12,....... 'rk.f, all O-D desires and assigned paths up to
current period

2. r;tj, Vi jandt= 1k.£+1, ............. . N Z.£+£, O-D desires for a roll period of length £ for

which assignment is to be made

3. rfj, Vi,jandt = Tk.l+£+1, ........... N [€+h, O-D desires forecast for the rest of current

stage based on historical and current information

4, r{i =0, Vijt>n [f-i-h, current assignments are not affected by the O-D desires

"far" into the future
Objective function:

n £.£+h
i . Y. 1 1
Min- 2o s Zi 2 2k (- Tig)
Subject to:

constraints (1) - (11)

This formulation is identical to the deterministic scenario formulation except for
assumptions on the amount of information available to controller and the time frame over
which the objective function is evaluated. The formulation is shown for the current stage
number N ¢

The path assignments in each stage are determined for the entire stage, but
implemented for only the roll period (as only the demand for this period is available with
certainty). A number of pertinent questions arise at this point. How far is "far"? What is
the "optimal" stage length h? What is a good value for the roll period £? How accurate
are the forecasted values for future O-D desires? Is there a need for feedback to check if
the assumptions made were realistic? How robust is the solution vis-a-vis the predicted
O-D desires? These questions need to be addressed while implementing the solution
methodology for the rolling horizon framework. The values of the various parameters are expecied ©
be problem specific. The fammulation also emphasizes the need for "good"” O-D demand forecasting models.
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Stochastic Formulation

Under this scenario, the controller possesses O-D trip desires for the current period
only. One way of approaching this problem is by assuming known distributions for
future O-D desires. The O-D desires for the remaining assignment planning horizon are a
vector of random variables in each interval. A number of vectors are generated for each
future interval and a Monte-Carlo simulation for various sequénces of random variables is
performed to obtain average values for the assignment of the O-D desires to various paths
on the network for the current period. The additional variables used in this formulation
are :
o(t) = optimal policy for the desired assignments in period t
xt = vector containing the number of vehicles on each arc at the beginning of period t,
based on decisions (1), &(2),......, &t(t-1) up to time t
y(t | xt) = The minimum total travel time from t to end of the planning horizon given x! .

The formulation is as follows:
Given:

1. r;c,, r;ik' Vijkandt=12,....... , t-1, O-D desires and assigned paths up to interval

t-1

2. r;j , Vi, ], current O-D desires

3.xt = { x!@ V a}, current state of network

4. Known probability distributions for future O-D desires
Objective function:

Wt [xt) = Min. (% Zj T (55, (() - E[Tjy (@@)] + E¥+1 x| 5, o)

Subject to:

constraints (1) - (11)

The objective function y(.) evaluates the minimum total travel time from the current
period to the end of the planning horizon given the O-D desires for the current period.
The objective function consists of two terms. The first term is the product of the
assignments in the current period based on the optimal policy o(t) obtained by
minimizing the current objective function and the average travel time on the paths
(obtained from the MC simulation). The second term is the expected value of the
objective function for the next time period given the current O-D desires and the current
optimal policy for assignment of O-D desires to paths. Hence, at each time step the
objective function evaluates the best decision for the current period in such a way that the
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expected future objective function is aso minimized. The constraints are identical to the
constraints in the previous formulation. The objective function is a complicated
nonlinear expression and the methodology for its evaluation needs further research.

The solution methodology for the first formulation (full information) is presented
next. It may also be applied for the second (rolling horizon).

SOLUTION METHODOLOGY
Simulation-Assignment Approach

A simulation based algorithm is used to solve the system optimal dynamic traffic
assignment problem described in the aforementioned problem statement. A traffic
simulator is used to evaluate the objective function, ensuring consistency with realistic
traffic behavior (FIFO, no holding back of traffic). The procedure assigns vehicles to
various paths directly, obviating the need to infer a path assignment from the solution to a
link-based formulation. The DYNASMART (Dynamic Network Assignment-Simulation
Model for Advanced Road Telematics) assignment-simulation model developed at The
University of Texas at Austin is used to simulate traffic.

This section describes the algorithm for SO and UE assignment strategies. It
consists of a heuristic iterative procedure in which a special-purpose traffic simulation
model is used to represent the traffic interactions in the network, and thereby evaluate the
performance of the system under a given assignment. The algorithmic steps for UE
assignment are virtually identical to those for the SO solution except for the specification
of the appropriate arc costs and the resulting path processing component of the
methodology. The algorithm is first summarized for the SO case, followed by a brief
description of the modification for the UE problem.

The use of atraffic simulation model to evaluate the SO objective function and
model system performance circumvents the principal difficulties that have precluded
solutions to redistic formulations of the problem, by obviating the need for link
performance functions, link exit functions and implicitly ensuring that the first-in, first-
out property holds on traffic facilities and that no unintended holding back of traffic takes
place at nodes. The algorithm uses the DY NASMART simulation-assignment model.
DYNASMART has the capability to simulate the movement of individual vehicles
through the network, with path selection decisions possible at every node or decision
point along the way to the destination, as supplied by the user decision rules reflecting
driver behavior in response to real-time information. In this work, vehicular paths are
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pre-assigned exogenously to DY NASMART, as determined by the steps of the SO or UE
solution algorithms. Thus DYNASMART is used primarily as a ssmulator to replicate
the dynamics of traffic phenomena in response to a given assignment of vehicles to paths.
A detailed description of the various capabilities of DYNASMART is provided in the
previous two chapters.

The simulation results provide the basis for a direction finding mechanism in the
search process embodied in the solution algorithm for this nonlinear problem. The
experienced vehicular trip times from current simulation are used to obtain a descent
direction for the next iteration. The time-dependent shortest travel time paths and |east
margina travel time paths are obtained using the time-dependent algorithms described in
Ziliaskopoulos and Mahmassani (1992), and discussed in Chapter 7. Note that the
solution methodology avoids complete path enumeration between O-D pairs.

Description of the Approach

The overall solution methodology is shown in Figurel6 for the formulation under
which O-D desires are assumed known for the whole assignment duration. It can be
suitably modified for the rolling horizon approach which involves repeatedly solving
deterministic sub-problems as discussed previously. The algorithm is an extension of
well-known solution methods for the static assignment problem, with key differencesin
each component of the algorithm and significant additional implementation challenges.
A brief summary of the approach is as follows:
1. Set the iteration counter | = 0. Obtain the time-dependent historical paths (paths
obtained from database) for each assignment time step over the entire duration for which
assignment is sought.
2. Assign the O-D desires (which are known a priori for the entire peak period) for the
entire duration to the given paths and simulate the traffic patterns that results from the
assignment usng DYNASMART.
3. Compute the margina travel times on links using time-dependent experienced or
estimated link travel times and the number of vehicles on links obtained as post-
simulation data (from step 2).
4. Using a special-purpose time-dependent least cost path algorithm, compute the |least
marginal time paths for each O-D pair for each assignment time step based on the
marginal travel times obtained in step 3.
5. Perform an all-or-nothing assignment of O-D desiresto the least marginal time paths
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computed in the previous step. The result is a set of auxiliary path vehicle numbers for
each O-D pair for each assignment time step t = |,............ , T,

6. Update paths and the number of users assigned to those paths. Update of paths is done
by checking if the path identified in step 4 aready exists (i.e., has carried vehiclesin at
least one prior iteration) for that O-D pair and including it if it does not. The update of
the number of vehicles (assignment of vehicles to the various paths currently defined
between the O-D pair after the path update) is performed using the Method of Successive
Averages (MSA), which takes a convex combination of the current path and
corresponding auxiliary path numbers of vehicles, for each O-D pair and each time step.
A detailed description of MSA is provided in Sheffi and Powell (1982). Note that other
convex combination schemes could equally be used.

7. Check for convergence using an E -convergence criterion (in terms of the difference
between iterations in number of users on each path).

8. If convergence criterion is satisfied, stop the program. Otherwise, update the iteration
counter | =1 + 1 and go to step 2 with the updated data on paths and the number of
vehicles assigned to each of those paths.

The complexity of the interactions captured by the simulator when evaluating the
objective function generally preclude the kind of well-behaved properties required to
guarantee convergence of the algorithm in all cases.

It should be noted, to help clarify certain aspectsthat pertain to the implementation
of this agorithm, that the assignment time interva is typicaly different from the
simulation time step used in DYNASMART. The latter is intended to provide an
accurate depiction of traffic phenomena, and has a resolution of afew seconds (6 seconds
isour default value). On the other hand, the assignment interval corresponds to a period
over which O-D demands are not expected to vary much; the decision variables (number
of vehicles assigned to aternative paths) are defined for the assignment intervals, which
are expected to be of the order of minutes, say 3 to 5 minutes, Therefore, an assignment
interval will typically consist of 30 to 50 simulation time steps. All post-simulation
information from DYNASMART is available for every smulation time step. Path
processing (shortest path) algorithms may proceed at any resolution between the
simulation time step and the assignment interval, with different implications for
computational efficiency and possibly the accuracy of the procedure. Guidelines
regarding these aspects can only be obtained through extensive numerical
experimentation.
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LINKMARGINAL
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ALL-OR-NOTHING
ASSIGNMENT
J Method of Successive Averages
MA)
AUXILIARY [XP(O,D, T.K,I+l) =
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Figure 16. Solution Algorithm for the System Optimal Dynamic Traffic Assignment Problem
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Finally, note that the “planning horizon” here is simply the period of analysis; itis
subdivided into a number of assignment intervals for which O-D information is expected
to be generated.

Modification to Obtain User Equilibrium Solution

As previoudly discussed, the solution to the time-dependent UE problem is obtained
by assigning vehicles to the shortest average travel time paths instead of the least
marginal paths in the direction finding step (step 5). In other words, use the (time-
dependent) average travel times on links instead of the marginal travel timesin the
shortest path calculations. In the above solution procedure, this simplifies step 3 and
modifies step 4 as indicated.

Discussion of Methodology

This section describes the various components of the simulation-assignment
methodology to solve the system optimal problem. The section starts with a brief
introduction to DYNASMART. Thisisfollowed by an illustration of the approach used
to obtain the time-dependent marginal travel times. Next, the time-dependent least cost
path algorithm is briefly addressed. The details of the updating mechanism are described,
followed by the path assignment procedure which interfaces the update mechanism with
DYNASMART.

The Simulation Model -- DYNASMART

DYNASMART is afixed time step macroscopic simulation-assignment mode! for
IVHS applications, as described in the previous two chapters of this report. When
DYNASMART is used in conjunction with the above algorithm, vehicles follow the
paths corresponding to the current solution in the execution of the algorithm. This means
that the user decisions component is essentialy inactive, as user choice consists of
following a given path. In the multiple user class formulation, some drivers follow paths
determined by the solution agorithm while othersfollow other rules, possibly including
compliance characteristics.

Similarly, the k-shortest path processing algorithms in the simulator need not be
executed when DYNASMART operatesin a “pure” simulator mode for a given path
assignment solution. However, other path processing capabilities, namely time-dependent |east
time and time-dependent |east cost path algorithms are used as part of tiresolution framework.
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DYNASMART is the basis on which the SO assignment solution methodology is
developed. In addition to the previoudy stated advantages of using smulation to
overcome problems like FIFO, holding back of traffic, and computation of an otherwise
analytically intractable objective function, DYNASMART furnishes important post-
simulation data which forms the basis for the remaining components of the algorithm.
After the current smulation, DY NASMART provides data on the average travel times,
predicted travel times and number of vehicles on each link of the network for each
simulation time step. The above information is used directly or indirectly in the marginal
path component, the time-dependent shortest path component, the update component, and
the path assignment component of the solution methodology.

Marginal Travel Times

This section discusses the significance of margina travel times to the SO assignment
problem and the approach used to compute approximate path marginal travel timesin our
solution methodology.

Significance of Marginals in SO Assignment. The SO dynamic traffic assignment
problem in the current context aims at minimizing the total system travel time. A global
path marginal travel time denotes the travel time increment to the system by the addition
of one vehicleto that path. Hence, the solution to the SO dynamic assignment problem
would entail assigning O-D desires to the time-dependent shortest global marginal path in
order to obtain a descent direction towards the desired minimum time solution (see Ghali
and Smith (1992)). The computation of global marginals would entail computationally
intensive brute force approaches to capture secondary effects that arise from network
interactions over different time periods. The approach used here calculates the marginal
costs in only an approximate manner that ignores some of the spatial and temporal
interactions taking place in the network. In particular, the marginal cost imposed by an
additional vehicle on a given path at a particular time is assumed here to be limited to
impeding vehicles on the links constituting that particular path (still correctly recognizing
the time-dependent incidence of that vehicle on the links). It may therefore be possible to
improve on the solution obtained by using a more elaborate procedure to estimate the
marginal costs.

A “first-order” approximation to the marginals is proposed by limiting the
marginal travel time on alink to the travel time contribution of an additional traveler on
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that link to the total travel time on that link. The path marginal total travel times are
obtained by asummation of the time-dependent marginal link travel times (the marginal
link travel time includes the actual time-dependent link travel time and the time-
dependent marginal contribution of an additiona traveler) for al links on that path.

Methodology for Obtaining Marginals. At the end of the current simulation, the time-
dependent link travel times and the number of vehicles present on each link are obtained
from DYNASMART. The margina link travel times are obtained according to the
following relationship :

For each O-D pair,

mitt(at) = tti(at) + itt(at) . x(at)
where

mitt(a,t) = marginal travel timein period t for link a

tt(at) = travel time (experienced/estimated) in period t for link a

itt(a,t) = increment in travel timein period t to traveler already on link a due to the
additional traveler

X(a,t) = number of vehicleson link aat timet

The product of itt(a,t) and x(a,t) gives total increment in the link travel time due to an
additional traveler on link ain period t, which is the sum of the additional increase in
travel time that each of the currently present x(a;t) vehicles on link a experience. The key
problem here isthe evaluation of itt(a,t) which is the derivative of tt(a,t) with respect to
X(at). The method to evaluate itt(a,t) isillustrated in Figure 17.

Figure 17 shows a plot of travel time tt(a) on link a versus the number of vehicles
x(a) on link a. In the static case, the link travel times and flows are assumed constant.
Hence, the calculation of the derivative using a static link-performance function is trivial.
In the dynamic case, the travel times and the number of vehicles on alink are time-
dependent. Consequently, the derivativeistime-dependent and this makesits evaluation
problematic.

The approach we use assumes that the time-dependency of the derivative is due to
“time-dependent” link performance functions. This means the tt(a) vs x(a) curve for link
a depends on the conditions on the link at that time, The link-performance curve changes
gradually over time which is to be expected due to the dynamic nature of the problem. If
the time interval between successive evaluations of marginals is small, it appears
reasonable to assume that three consecutive points in time are on the same link
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performance curve. This assumption is made in the evaluation of itt(a,t) and is illustrated
in the graph where three successive time points (intervals t-1, t and t+1) are collapsed
onto the same curve. A quadratic fit using the three points results in the time-dependent
link performance curve at time t and the slope of this curve at the time t gives itt(a,t) as
indicated in the graph. Once itt(a,t) is evaluated, the calculation of mltt(a,t) is
straightforward as the values of other variables are obtained from the simulation. The
time-dependent link performance curves are obtained assuming that three successive time
periods are relatively close to each other. However, the consideration of small time
intervals (in the order of a few seconds) may cause some instability in the curves because
the values of travel times and the number of vehicles in successive intervals may show
"jumps" at times. Hence, there is a trade-off between the approximate correctness of the
curves and the robustness of the curves with the use of very short time intervals.

tt(a) A

dtt(a,t)
— jit(a,t) =

dx(a,t)

x(a)

Figure 17. Computation of Marginals

A number of issues arise at this point. First, the robustness of the marginal travel
time values over time is crucial to the stability of the curves. This robustness is achieved
through the use of averaging techniques. Averaging can be done over time intervals,
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number of vehicles or both. The simulationtimeinterval weused in DY NASMART is6
seconds. This interval is too small for update of paths for a given O-D pair as no
appreciable change takes place in the system in such a short time. An assignment interval
of 3to 5 minutesis used for updating the paths. The marginal values are necessary for
assignment intervals only and not for smulation intervals. One averaging technique to
obtain the marginal travel timefor the assignment intervalsis by averaging the marginal
travel time values for the simulation interval's between successive assignment intervals
and using that value for the latest assignment interval. Computing a moving average of
marginals over the last n assignment time intervalsis another averaging technique (that
has also been tested in some versions of our implementation). The marginal values can
also be computed by taking an average of the marginal travel times for all vehicles which
are present on a link sometime during the duration of an assignment interval.

Another issue with regard to the computation of marginal travel times is the value of
travel time tt(at) that should be used to compute the marginals. Post-simulation data
gives two types of travel times, “average’ or (“estimated”’) and “experienced”. The
average travel time on alink (for agiveninterval) is based on an analytical model relating
speed to the concentration on the link, as well as the estimated queue discharge time.
Alternatively, the net effect of the various traffic phenomena interacting at a given
location could be captured by the experienced travel times of vehicles in the simulated
system. The “experienced” time is the difference between the respective times of exit and
entry of agiven link by acertain vehicle.

Improvement of the approximate marginal cost calculation methods and selection of
appropriate time intervals and averaging techniques are the subject of continuing
numerical tests.

Time-Dependent Shortest Marginal Path Computation

An essential element in the application of IVHS to congested traffic networks is the
time-dependence of travel times. So-called “anticipatory” real-time route guidance aims
at routing vehicles in real-time in a network based on the travel times they would
experience on the various links of their path (as opposed to routing based on current
travel times). The problem consists of finding the shortest path from a node to al other
nodes in a directed graph with time-dependent travel times. Dreyfus (1969) proposed that
the problem could be addressed by using Dijkstra’ s algorithm in an expanded static
representation of the time-varying problem for deterministic travel times. Kaufman and
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Smith (1990) made explicit an assumption that is sufficient for the validity of Dreyfus
approach and discussed thisissue from an IVHS perspective. This problem isreviewed
in more detail in Chapters 6 and 7.

The marginal travel times on paths are obtained by a summation of marginal link
travel timesfor all links on that path. Time dependency of the marginal link travel times
requires atime-dependent least cost path algorithm to calculate the paths. A state-of-the-
art time-dependent least cost path algorithm developed at The University of Texas at
Austin which is coded for efficiency in the computational time and customized for use
with DYNASMART in the solution methodology is used to obtain the shortest marginal
time-dependent (auxiliary) travel paths based on the marginal link travel times and
average link travel times. The various capabilities of the algorithm including recognition
of turn movements and use of very efficient data structures are discussed in
Ziliaskopoulos and Mahmassani (1992a, 1992b), as well as in Chapters 6 and 7 of this
report, An all-or-nothing assignment of the O-D desires is made to the auxiliary paths.

Figure 18 highlights the procedure for the computation of the shortest marginal
paths. The time-dependent least cost path algorithm requires average and marginal link
travel times as inputs. This seemingly unimportant detail reflects a subtle but
conceptually important point for correct calculation of time-dependent marginal shortest
paths. A least marginal path calculation based solely on margina link travel costsis
incorrect because marginal link travel time does not have a physical interpretation. The
correct shortest marginal path computation uses marginal link travel times as link
penalties and average (or experienced/estimated) link travel times as link movement
costs, as illustrated in the following example.

The portion below the flow chart in Figure 18 shows a path fromi to j. Starting at
nodei at timet, link 1 (i-K) is chosen as the next link on the path based on the link
penalty mitt(l,t) which is the marginal link travel time on link 1 at time t. However, node
k isreached at atime att( 1 ,t) and not mitt( 1 ,t) asatt( 1 t) isthe actual time taken to move
on link 1. Consequently, the margina link travel time considered on link 2 (k-j) is
mltt(2,t+att( 1,t)) and not mitt(2,t+mltt( 1 ,t)).

The step following an al-or-nothing assignment is the update of paths. It addresses
the distribution of O-D desires for a particular O-D pair at a given time to the various
“optima” paths at that time. It was indicated previously that an all-or-nothing assignment
would be used in some manner for distributing vehicles to paths. The next section
illustrates this approach.
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Figure 18. Computation of Shortest Marginal Paths

Update of Paths and Vehicle Assignments

A fundamental requirement for the system optimal dynamic assignment problem in
the ATIS context is the ability of the controller to assign vehicle demands for a given
origin, destination and start time to various paths in the network. In the solution
algorithm, auxiliary paths are generated and an all-or-nothing assignment of the O-D
desires is made to these paths during each iteration to obtain a descent direction. Of
course, the all-or-nothing assignment does not in itself necessarily represent a better
solution than the assignment strategy at the beginning of the current iteration, especially
if the time intervals considered are not very small. Assignment on an all-or-nothing basis
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only could lead to flip-flops from iteration to iteration. Instead, the new solution is
obtained by combining the "current" assignment (at the beginning of the iteration) with
the auxiliary all-or-nothing solution.

In our approach, the update (smoothing) mechanism is the so-called Method of
Successive Averages (MSA). The method of successive averages (MSA), proposed by
Sheffi and Powell (1982) for the stochastic user equilibrium problem. It is based on a
predetermined move size along the descent direction. The move size 0, is determined a

priori and not on the basis of some characteristics of the current solution. The move, size
o, has to satisfy certain requirements for an algorithm to converge, and one of the
simplest move-size sequences satisfying those requirements is used by MSA. At each
iteration, MSA uses the inverse of the iteration number (n) as the move size. Hence,

an=a

The vehicle assignments for the next iteration are obtained by using this move size in

the search procedure with the descent direction:
d(n) = yu - X, » where x, and yy, represent the current solution values and auxiliary

values respectively for iteration n. The solution for the next iteration X, 1 is obtained as
Xp+l = X + % (yn -Xp) which is equivalent to xp41 = (1 - %) . Xp + ( % ). ¥Yn- A

comprehensive discussion on MSA is given in Sheffi (1985).

Figure 19 illustrates the details of the update procedure. There are key advantages to
updating paths (partial path enumeration) and updating vehicle assignments (splitting of
O-D demands) during each iteration of the solution methodology. First, paths are
included for a given O-D pair (in an assignment interval) only when they are generated as
an auxiliary path. If an auxiliary path (obtained from the shortest marginal paths
component) is not already stored for the O-D pair for that assignment interval, it is
included. Thus, only partial enumeration of essential paths for the O-D pair is performed.

Path Assignment

In the update component of the algorithm, paths and vehicle assignments to paths are
updated for each O-D pair for every assignment interval. The next step in the process,
which is an implementation issue, is the assignment of a path to each vehicle in the
simulation based on the above values. This interface between the update component and
DYNASMART is done through the path assignment component.
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For every assignment interval and for each O-D pair, the time-dependent O-D
desires, the set of paths and the splits of vehicles to paths are available at this point.
Figure 20 describes the interface with DY NASMART. The path assignment component
randomly assigns vehicles to the various paths for a given O-D pair in agiven interval
while satisfying the requirement on the relative splits of O-D desires to the various paths.

XP(O,D,T,K,I)
NUMBER OF VEHICLES
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IDENTIFIED BY O,D,ST

'

RANDOM ASSIGNMENT
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!

DYNASMART
LINK MARGINAL
TRAVEL TIMES
t
— . .
T = assignment interval
t = smulation interval
- : :
T > ST =trip start time

Figure 20. Assignment of Path to Each Vehicle
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EXPERIMENTAL ANALYSIS

This section describes two sets of experiments for the single user class dynamic
traffic assignment problem. A number of experiments (Experiment Set 1) have been
conducted to derive insights on the dynamic system performance under alternative
assignment strategies and under different intensities of network loading, thereby
prescribing directions for the focusthat ATIS information supply strategies should take,
and characterizing the circumstances when aternative assignment strategies will be
effective. A principal objective of this set of experimentsis to provide a comparative
assessment of system performance under the system optimal and user equilibrium
dynamic traffic assignments. Additional experiments (Experiment Set 11) have been
conducted to investigate the system performance under another assignment strategy that
provides users with descriptive real-time information and assumes users to follow
boundedly-rational path switching rules, and to compare the effectiveness of this strategy
vis-avis the SO and UE strategies. In addition, this set of experiments also tests the
sensitivity of the system performance to key parameters such as temporal loading patterns
and market penetration. Another principa objective of these two sets of experimentsis to
analyze time-dependent relationships among network traffic flow descriptors to
characterize the vastly varying network traffic conditions during peak periods of traffic
flow and to obtain insights into the quality of service afforded under aternative
information supply strategies.

Experiment Set |
Motivation and Objectives

The performance of a traffic network employing the solution methodology discussed
in a prior section of this chapter is analyzed under both system optimal and user
equilibrium time-dependent assignments. Asin the static case, system optimal and user
equilibrium dynamic assignments involve similar algorithmic steps, differing primarily in
the specification of path travel costs that form the basis of the corresponding assignments.
System optimal (SO) dynamic assignment is accomplished using time-dependent
marginal travel times (see Ghali and Smith, 1991) whereas a user equilibrium (UE)
assignment is attained using the time-dependent average travel times. We analyze the
system performance under the above assignment schemes for different intensities of
network loading covering the spectrum of network states from uncongested networks to
very highly congested networks. In addition, the numerical experiments illustrate the
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extent of the differences between SO and UE time-dependent assignments in terms of
total system cost, at varying levels of network congestion. This question is of
fundamental importance to ATIS operations, with regard to the relative benefits of
normative versus descriptive information supply strategies.

As noted previously, interpretation of the time-dependent UE solution is not evident
from the standpoint of ATIS. It is considered here as a useful proxy for afavorable
scenario of long-term network performance under real-time descriptive information.

It is known from static network equilibrium theory that SO and UE lead to identical
solutions only for situations where the shortest paths taken by users are ssmultaneously
the best paths from a system viewpoint. Such situations are observed when networks are
relatively uncongested so that link operating speeds are unaffected by the flows on the
links (limited vehicle interactions). At the other extreme, under very highly congested
conditions, system performance is not likely to be markedly different under the two
assignment schemes because the opportunities for SO to sufficiently ameliorate the traffic
situation would probably be limited.

For network conditions between the two extremes, the extent of the differences
between SO and UE solutions, particularly in terms of overall system cost, are not
known. Thisis very important for ATIS, because if the two solutions are not perceptibly
different, coordinated cooperative SO route guidance imposed by a central controller may
not be necessary, and less complicated and simpler to implement descriptive information
to non-cooperating drivers may be sufficient. |If this were the case, there would be
important implications for the focus that ATIS information supply strategies should take,
with more attention directed to ways of guiding the system towards UE convergence and
away from wide fluctuations. However, if SO indeed holds promise for meaningful gains
over UE, then normative route guidance and/or strategies to induce the system near its SO
should be pursued. Of course, it is also desirable to ascertain network and traffic
conditions under which differences between SO and UE are meaningful.

The overall user cost and network performance under time-dependent SO and UE
assignment patterns are examined in a series of numerical experiments performed on a
test network under different loading levels. The system performance is gauged using
average network level traffic flow descriptors, in addition to the standard parameters like
average travel time. The time-dependent nature of the problem further complicates the
aready intricate problem of characterizing traffic flow performance at the network level,
previously addressed only under steady-state conditions, as discussed hereafter.
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Network Traffic Flow Theory

Mahmassani, Williams and Herman (1984, 1987) generalized the definitions of speed,
flow and concentration to the network level and examined their interrelation in their
model of network traffic performance. These concepts are extended to the dynamic case
in the current analysis, in order to characterize the vastly varying network ‘traffic
conditions (especially for medium to high network loading levels) during the peak period.
Average network speed V (kmph) is obtained as the ratio of total vehicle-kilometersto
total vehicle-hours in the network over the duration of interest. The average network
concentration K (vehicles per lane-km), for the duration of interest, is the time average of
the number of vehicles per unit lane-length in the system. However, the concentration
varies dramatically with time in dynamic traffic networks. Hence, the time-dependent
network concentration is examined by taking 5-min averages of number of vehicles per
unit lane-length in the system. An overall measure of network concentration K over the
duration of the period of interest is obtained by taking the arithmetic average of the 5-min
averages. Similarly, time-dependent network flow, interpreted as the average number of
vehicles per unit time that pass through a random point along the network, is examined
by taking 5-min averages, an overall measure of network flow Q over the peak period is
obtained by taking the smple average of (Eligi )/ (E li ), where gi and i respectively
denote the 5-min average flow and the length of link i, and the summations are taken over
al network links.

Two fundamental relationships between these three network traffic flow variables are
investigated in this study. The first relates average network speed, V, and average
network concentration, K. For arterials or single roadways, a qualitative trend of
decreasing speed with increasing concentration is well established. The same general
trend was observed to hold at the network level in the simulation experiments of
Mahmassani et al. (1987), though the complexity of network interactions preclude the
analytic derivation of such arelation directly from the link-level relations. The second
relationship analyzed is the basic identity Q = KV. Formally established for single
roadways, it was shown to also hold at the network level in the previously mentioned
steady-state experiments (1987). These experiments were performed keeping the
network concentration level constant for the duration of interest by treating the network
as a closed system. The NETSIM package was used for the study and vehicular behavior
was governed by the comprehensive microscopic rules embedded in NETSIM. The
present study replicates the network traffic conditions of a rush hour traffic situation, and
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uses DYNASMART. The Q = KV identity is expected to hold only approximately for
time-varying network traffic flow.

Experimental Design and Set-up

This section first details the network configuration and traffic characteristics of the
test network used in this study. Thisis followed by an illustration of the experimental
set-up.

Network Configuration and Traffic Characteristics

The test network used in this study consists of a freeway with a street network on
both sides as shown in Figure 21. It has 50 nodes and 163 links. Nodes within the
freeway section are neither origin nor destination nodes. 38 origin nodes and 38
destination nodes are obtained by excluding freeway nodes (nodes 1-37 and 44).
Freeway nodes are connected to the street network through entrance and exit ramps.
Unless otherwise indicated, al arcs shown are two-directional. All links are 0.83 km (0.5
miles) long and have two lanes in each direction except for the entrance and exit ramps
which are directed arcs with asingle lane. The freeway links have a mean free speed of
91.67 kmph (55 mph) and the other links have a 50 kmph (30 mph) mean free speed. In
terms of traffic signal characteristics, 25 intersections have pre-timed signal control, 8
have actuated signal control and the remaining 17 nodes have no signal control.

Experimental Set-up

The comparative assessment of system performance for system optimal and user
equilibrium assignments is conducted under different network loading levels, which
generate different levels of network congestion. We define the network loading factor as
the ratio of the total number of vehicles generated in the network during the assignment
period to a given reference number (19403 vehicles over a 35-minute period in our
experiments). Table 15 shows the different loading factors considered in this set of
experiments, and the corresponding number of vehicles generated on the test network
during the duration of interest (35 minutes in al cases). In addition, it shows the
corresponding number of “tagged” vehicles (vehicles generated for the 30 minute
duration after the 5 minute start-up time) for which relevant performance statistics are
accumulated. The loading factors range from 0.6 (very low congestion with 11616
vehicles) to 2.4 (extremely high congestion with 46674 vehicles). Under each loading
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Table 15. Loading Factors and the Corresponding Numbers of Generated Vehicles
and Tagged Vehicles for the First Set of Numerical Experiments

Loading Factor Number of Generated Vehicles Tagged Vehicles
0.6 11616 10585
0.8 15509 14098
1.0 19403 17621
12 23305 21145
14 27196 24697
16 31090 28205
18 34978 31726
2.0 3887 1 35258
2.1 40818 37014
2.2 42769 38784
2.4 46674 42322

8000

Vehicles Generated

0 Y T T T Y Y v
0] 10 20 30 40

Time (minutes)

Figure 22. Time-Dependent Vehicle Generation
(shown as S-minute aggregates) for Loading Factor 2.0
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level, the UE and SO solutions are obtained, and the resulting time-dependent link flow
patterns are obtained from DYNASMART. Figure 22 shows a sample time-dependent
loading pattern for aloading factor of 2.0. The indicated points on the graph correspond
to the number of vehicles generated in the 5-minute interval centered on the location of
each point; the lines connecting the points are physically meaningless and are included
only for visual convenience. The shape of the loading curve for other network loading
levels is approximately the same, though appropriately scaled in magnitude. This
temporal pattern emulates real-world network loading for the peak period, with an
initially increasing generation rate until a peak is reached, followed by a decreasing
vehicle generation rate.

In the present study, a start-up time of 5 minutesis provided in DY NASMART for
the network to be reasonably occupied, followed by a 30 minute peak period generation
of traffic (for which performance statistics are accumulated). Another aspect of the
experimental set-up which critically influences the system performance is the spatial
distribution of the O-D demand pattern. The vehicles generated are about evenly
distributed spatially, both in terms of their origins and destinations, except for nodes 37
and 44 which generate/attract only about 25% the number of vehicles
originating/destinated to atypical origin/destination node (i.e. nodes|-36).

Analysis of Results

The results from the various experiments are viewed from two principal perspectives.
First, they form the basis for comparison of system performance, particularly user costs
under UE and SO assignment schemes, thereby addressing the questions relevant to ATIS
information strategies described in Experiment Set |. Secondly, they are used to
investigate network level traffic flow characteristics and relations using network-wide
traffic descriptors. This investigation is conducted primarily for the SO flow pattern. An
additional element of the study isthe time-dependent analysis of the travel time gains of
SO over UE, dso of significance to ATIS operation.

The results provide several key insights from both of the above perspectives. They
manifest a clear qualitative and quantitative distinction in the solution provided by the SO
assignment scheme as opposed to the time-dependent UE assignment procedure to route
vehicles in atraffic network. The results also reveal important and robust macroscopic
relationships among network level traffic variables which parallel those for single
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roadways. Of course, it must be kept in mind that these results are based on asingle
network topology, and should not be generalized indiscriminately. The primary purpose
of these experiments is to illustrate the algorithmic procedure developed for time-
dependent SO and UE assignment, and demonstrate its applicability to investigate
important substantive questions of network traffic performance.

Table 16. Summary Statistics for System Optimal Assignment

Loading Av. Trip Tota Trip Time Average Trip Total Trip Average

Factor Time Distance Distance Speed

(minutes) (hours) (km) (km) (kmoh)

0.60 3.85 679.54 3.03 32096.25 47.23
0.80 3.90 916.05 3.02 42411.67 46.30
1.00 4,03 1183.06 3.03 36820.42 45.22
1.20 4.40 1549.48 3.07 64728.75 4177
1.40 4.86 1999.10 3.08 76207.92 38.12
1.60 6.04 2837.07 3.20 90222.08 31.80
1.80 7.65 40429 1 3.28 103997.50 25.72
2.00 10.46 6149.46 3.32 117013.33 19.03
2.10 13.08 8071.91 3.35 123996.67 15.37
2.20 16.57 10710.93 332 128811.67 12.03
2.40 24.95 17601.78 3.55 149978.33 8.52

NOTE: 1 km = 0.6 mile

Table 16 reports summary statistics on the system performance for the SO
assignment for the different loading factors. As expected, at low levels of network
|oading, when the network is relatively uncongested, the average travel times of vehicles
in the network are relatively close across the different loading levels. Asthe load is
increased, the effects of congestion become more prominent and the average travel times
in the network increase at an increasing rate with the loading factor. At very high loading
levels, the marginal effect of additional demand on system performance is very high. The
results also indicate that there is only limited variation in the average distance traveled by
vehicles under the various network loading levels, implying that greater congestion and
not longer travel routes is the primary cause of the higher system trip times (the objective
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function seeks to minimize total system travel time only). Nevertheless, the average
travel distance does increase with the loading level, reflecting an increasing percentage
(though small in magnitude) of drivers assigned to longer travel routes.

Table 17 presents similar summary statistics for the UE assignment. The trends are
similar to those described above for the SO case. The average travel distances under UE
for various network loading levels are smaller than the corresponding distances for SO,
indicating a smaller percentage of long travel routes under UE. This may be explained by
some users being assigned to longer routes in order to reduce congestion elsewhere so as
to reduce systemwide travel times.

Table 17. Summary Statistics for User Equilibrium Assignment

Loading Av. Trip Total Trip Time Average Trip Total Trip Average
Factor Time Distance Distance Speed
(minutes) (hours) (km) (km) (kmph)
0.60 3.86 681.52 3.00 31839.58 46.72
0.80 3.92 9208 1 2.97 41898.33 45.50
1.00 4.15 1219.46 2.98 52656.25 43.18
1.20 4.60 1622.47 3.02 63731.25 39.28
1.40 543 2236.52 3.00 74289.58 3322
1.60 6.79 3192.16 3.08 87 165.42 27.30
1.80 9.00 4762.95 313 99513.33 20.88
2.00 1291 7587.70 3.27 115249.17 15.18
2.10 14.94 9215.69 3.22 119132.50 12.93
2.20 18.55 11993.56 3.32 128605.00 10.72

NOTE: 1 km = 0.6 mile

Figure 23 shows comparatively the average trip times under various network loads
for UE and SO assignments. As discussed above, both curves illustrate the increasing
marginal effects of additiona demand on system trip times. Figure 23 highlights the
differencein the quality of the solutions provided by the two assignment rules for time-
dependent network flows. Thisis further illustrated in Figure 24 which depicts the
percentage improvement in average travel time of SO over UE (as afraction of the UE
travel time) for the various average network concentrations corresponding to the various
levels of network loading. At low loading levels, SO and UE provide essentially
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Figure 23. Comparison of Average Trip Times (minutes) of SO and UE Assignments
for Various Levels of Network Loading

identical solutions. For loading factors 0.6 and 0.8, SO shows improvements of 0.3% and
0.5% respectively over UE. At such low concentration levels, average link speeds remain
relatively unchanged due to limited interactions among vehicles, and the marginal travel
time on the link is essentially identical to the average travel time, leading to almost
identical solutions under the two assignment schemes. When network congestion
increases slightly, to loading factors of 1.0 and 1.2, the corresponding SO trip time
improvements are 3.0% and 4.5%, respectively, over the UE solution. As the network
becomes moderately congested, system benefits under the SO assignment become more
pronounced, with 10.6% and 11.2% improvements over UE for loading factors of 1.4 and
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1.6 respectively. For heavily loaded networks, very substantial gains are obtained, with
15.1% and 19.0% improvements in system travel times using SO, for loading factors 1.8
and 2.0 respectively.
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Figure 24. Percentage Total Trip Time Savings of SO over UE Obtained as a Fraction
of Total UE Trip Time for Different Loading Factors Versus Average Network
Concentration.
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As the levels of network loading are increased further, the system reaches very high
levels of congestion that near gridlock, and overall network throughput drops, making it
increasingly difficult to discharge all vehicles from the system in a reasonable amount of
time. Under these conditions, the ability to improve overall conditions by re-routing
certain vehicles to paths with lower marginal costs diminishes, as all links become highly
congested. Thus, the advantage of an SO assignment relative to UE begins decreasing, as
reflected by reduced improvements of 12.4% and 10.7% for loading factors of 2.1 and 2.2
respectively. The gains begin dropping rapidly beyond this point, with higher loading
levels eventualy yielding negligible differences in the quality of the solution provided by
the two schemes.
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Figure 25. Trip Time Savings for SO over UE (in minutes/vehicle) as a Function of
Network Load (the savings are assumed to be equally distributed among all the
vehicles generated for that loading factor)
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Figure 25 represents the average trip time improvement per vehicle under SO
assignment for various levels of network loading. The results mirror the conclusions
from Figures 23 and 24. Of course, this improvement in trip time is not experienced
uniformly by all vehicles; in particular, it varies over the vehicle' s time of departure
during the peak period. The time-dependent nature of the travel time savings is examined
below.

Figure 26 depicts the cumulative demand generation as a function of time under the
2.0 loading factor along with the cumulative discharge curves under the SO and UE
assignments. The various points on the plot are obtained by accumulating the statistics
available for each S-minute interval. The area on the plot between the two discharge
curves represents the time savings of SO over UE, in this case about 1438 hours. The
figure illustrates the time-dependent nature of the benefits generated by SO over UE.
When the network isin the early stages of loading (for about the first 20 minutes), it is
not sufficiently congested to produce meaningful differences between SO and UE
assignments. Most of the savings of SO are accrued between thirty and seventy minutes
into the peak period as the network is close to peak congestion levels. Beyond seventy
minutes, there appear to be virtually no significant gains of SO over UE as the network is
again relatively uncongested. Thus the benefits of route guidance based on SO
assignment over UE routing are not accumulated uniformly over time — rather they are
gained when the network is relatively well congested.

Figure 27 depicts the time savings per vehicle for SO over UE as afunction of the
vehicle's time of departure under different loading factors. To capture the time-
dependency of the benefitsin a systematic manner, travel time savings are accumul ated
based on the start times of the vehicles. In the figure, O-5 on the y-axis (start time) refers
to al vehiclesthat start between zero and five minutes. Vehicles that start during the first
five minutes do not face congested conditions and hence SO does not yield savings over
UE for these vehicles. Vehicles that start during the intervals 10-15 and 15-20 minutes
accrue time savings at an increasing rate as the (cumulative) loading level increases.
Over their trip, these vehicles encounter significant congestion that increases with the
loading factor. For vehicles starting between 20 and 35 minutes, the benefits increase
with network loading at an increasing rate until the 2.0 loading factor level, and then dip
down.
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Figure 26. Cumulative Generation Curve and SO and UE Cumulative Discharge
Curves for a Loading Factor of 2.0

The time-varying nature of the savings of SO relative to UE and its dependence on
the network load is further illustrated in the Figure 28, which depicts two-dimensional
plots of savings as a function of departure time, with each plot corresponding to a
different loading factor. The Figure 29 represents essentially similar information but in
cumulative form. At a loading factor of 1.2, benefits are just perceptible for vehicles
which enter the network during the latter half of the peak period as they face lightly
congested conditions. A clearer picture emerges for a loading factoi of 1.6 where the
network is moderately congested for some duration. Vehicles departing in the first fifteen
minutes do not encounter sufficient congestion in the network to obtain significant
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benefits for a SO assignment relative to UE. As congestion builds up, the SO assignment
provides substantial benefits, until a peak is obtained for vehicles starting between twenty
and twenty-five minutes. Hence, benefits begin diminishing for vehicles entering the
network towards the end of the peak period. At aloading factor of 2.0, the same genera
trend is observed as above, though it is more marked because of the higher levels of
congestion. Very high levels of congestion are observed for some period of time for a
loading factor of 2.2, leading to reduced relative effectiveness of SO compared to UE for
vehicles that face those congestion levels. This is reflected in the sudden drop of savings
for vehicles starting between twenty and thirty minutes.

Minutes

Loading Factor

Figure 27. Trip Time Savings (of SO Relative to UE) Per Vehicle (in minutes)
as a Function of Loading Factor and Start Times (in minutes) of Vehicles
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Network Flow Relations

The second aspect investigated through the experimental results relates to the
macroscopic network level traffic theoretic relationships among network-wide traffic
descriptors for dynamic traffic networks under consideration. The pertinent traffic
variables and their averages over time and space were defined previoudly. As noted,
while mathematical relationships among traffic flow variables are reasonably well
established for arterials and intersections, the intricacies of interactions at the network
level preclude analytic derivability of network-wide traffic relationships from the link-
level traffic models. However, the smulation results extend the previous findings of
Mahmassani et al. (1984, 1987) that the basic trends captured by the single roadway
relationships seem to also hold at the network level for the dynamic case.

Figure 30 shows the average network speed and average trip time under different
network loading levels for the SO assignment. Both curves are smooth indicating
relatively robust performance characteristics at the network level, and clearly illustrating
the increasing marginal effect of additional demand on the system performance.

The network level speed-concentration relationship for the SO assignment is
depicted in Figure 31. Each point on the plot corresponds to a simulation run for the
whole assignment period under a particular loading level. The figure clearly illustrates
decreasing average network speed with increasing network concentration, paralleling the
K-V relationship for an individual roadway. Note that the plot has a point of inflection
corresponding approximately to the 1.8 loading factor. This qualitative trend has been
observed previoudly in the simulation experiments of Mahmassani et a. (1984) on a
regular test network using the NETSIM package.

Table 18 examines the Q = KV relationship, which holds as an identity for asingle
roadway. Results indicate that Q and KV differ by less than 5% for all cases, whichis
well within the error introduced by the manner in which the time averages were
computed. As described in thefirst section, the average network flow and concentration
were calculated as an overall average of 5-minute averages, whereas the average network
speed was determined through quantities accumulated every 0.1 minute (Ilength of a
simulation interval) of the simulation.

Figures 32 and 33 represent the network flow-concentration and speed-flow
relationships respectively. The plots indicate that the Q-K and V-Q relationships parallel
those for single roadways up to moderate levels of congestion, diverge somewhat as
congestion increases, and become confluent for very high congestion levels.
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An essential element to be noted in the network level analysis is the time-dependent
nature of the phenomena of interest. Averaging quantities like network flow and
concentration over the duration of the peak period is likely to mask the time-dependency
of network performance. For example, overall network concentration is obtained by
averaging low levels of concentration at both ends of the peak period and high levels in
between, as shown in Figure 34 which depicts the time-dependent variation of
concentration (normalized by dividing by a jam concentration of 96 veh./lane-km) over
the duration of interest.
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Figure 30. Average Network Speed (kmph) and Average Trip Time (minutes) for
the System Optimal Case as a Function of Network Load (in number of vehicles)
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Table 18. Results of the Q, KV Comparison

LF K v KV Q % Difference
veh/lane-km km/hr veh/lane-hr _ veh/lane-hr  (KV-Q)/Q
0.6 3.79 47.23 178.83 170.70 4.76
0.8 5.01 46.30 231.96 222.51 4.24
1.0 6.38 45.22 288.39 275.89 4.53
1.2 8.41 41.77 351.34 335.34 4.77
14 10.38 38.12 395.65 378.24 4.60
1.6 13.42 31.80 426.82 408.16 4.57
1.8 14.36 25.72 369.39 353.53 4.49
20 18.19 19.03 346.25 331.11 4.57
2.1 20.89 15.37 321.04 306.88 4.61
2.2 25.77 12.03 310.10 296.82 4.47
2.4 31.75 8.52 270.37 259.80 4.07

NOTE: 1 km = 0.6 mile
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Figure 31. Average Network Speed V (kmph) as a Function of Average Network
Concentration K (vehicles/lane-km) for the System Optimal Case
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Experiment Set 11
Objectives

This set of experiments examines a number of key issues besides those studied in the
previous section. System performance is evaluated under a third information supply
strategy, along with the SO and UE assignment strategies. This strategy consists of
providing users with descriptive information on prevailing link trip times, and allowing
them to make route choice decisions (both at the origin and en-route) based on prevailing
network conditions. The users are assumed to make route decisions based on boundedly-
rational path switching rules whereby the user switches from the current path at a
decision point (typically a node on the network) if travel times savings on an alternative
route exceed a threshold value. This switching rule was described in Chapter 2, in
conjunction with the user decisions component of DYNASMART. System performance
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under this descriptive information supply strategy is compared to the performance under
SO and UE assignment strategies.

Another extension over the previous set of experiments is the study of time-
dependent relationships among network level traffic flow descriptors. Here vt, kt and gt
denote the time-dependent averages of speed, concentration and flow respectively,
corresponding to afive-minuteinterval starting at timet. The overall aggregate averages
are correspondingly denoted by V, K and Q. The time-dependent average network speed
vt (kmph) is defined as the ratio of total vehicle-kilometersto total vehicle-hoursin the
network over each five minute interval t. The overall average network speed V (kmph) is
smilarly calculated but over the entire duration of interest. The average network
concentration kt (vehicles per lane-kilometer) is the time average of the number of
vehicles per unit lane-length in the system for time interval t; K is similarly defined over
the entire duration of interest. The time-dependent average network flow gt is taken as
the average number of vehicles per unit time that pass through a random point (uniformly
located) along the network during interval t, and is calculated taking the smple average
of (Eliqit/ Eli) where git and li respectively denote the 5-min average flow and length
of link i, the summations being performed over al network links. The overal Q is
similarly obtained over the entire duration.

Experimental Design and Set-Up

This section first describes the structure and traffic characteristics of the test
network, followed by an overview of the experimental design and the assumptions made
in this set of experiments.

Network Characteristics

Figure 35 depicts the test network used in this set of experiments. It isvery smilar
to the previous one, with afew additional links and minor changes to provide better
circulation under the myopic switching options. In particular, 5 links have been added,
for atotal of 168 links. With regard to the intersection signal control, 26 nodes have pre-
timed signalization, 8 have actuated signal control and the rest have no signal control.
The pre-timed signals have a 60 second cycle length with two phases, each with 26
seconds of green time and 4 seconds of amber time. The actuated signals have 10
seconds of minimum green time and 26 seconds of maximum green time.
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Figure 35. Network Structure for Experiment Set ||
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Experimental Factors and Design

A number of experiments are conducted to examine network performance under
various information supply strategies and assignment rules in the context of electronic
route guidance systems.

Experimental Factors. The experimental factors considered in this study can be
separated into three primary categories:

1. Loading Patterns. Two loading patterns considered are referred to as loading profiles |

and I1. Loading profile | generates vehicles uniformly over the assignment duration.
Loading profile I impacts the network with relatively large number of vehicles over aten
minute period which is preceded and succeeded by low levels of uniform loading for the
rest of the assignment duration. The two profiles are designed so as to represent extremes
in loading conditions for the way in which they influence the system performance. A

typical peak period loading pattern would most likely lie between these two benchmarks.

In both cases, asin the first set of experiments, vehicles are generated over a 35 minute
period which includes a 5-minute start-up generation time, followed by a 30 minute
generation of vehicles for which statistics are accumulated. With regard to the spatial

distribution of the O-D trip desires under the two loading patterns, vehicles are generated
about evenly in space, both in terms of their origins and destinations, except for nodes 37
and 44 which incur only about 25% the volume (both as origins or destinations)

compared to a typical node (nodes I-36).

2. Demand Levels: Theloading factor (LF) is defined as the ratio of the total number of
vehicles generated in the network during the assignment period compared to a base value
of about 19220 (which represents aloading factor of 1.0). Five different loading factors
are considered in the experiments, namely, 1.0, 1.4, 1.8, 2.0, and 2.2. The corresponding
number of vehicles generated for each loading factor is detailed in the Table 19. These
represent various levels of network congestion ranging from low (for LF = 1.0) to
moderately high (for an LF of 2.2). The two loading profiles discussed earlier are
designed so that a given loading factor generates about the same number of vehicles
under the two profiles.
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Table 19. Loading Factors and the Corresponding Numbers of Generated Vehicles
for the Numerical Experiments

Loading Factor Number of Generated Vehicles
1.0 19220
1.4 26936
1.8 34656
2.0 38506
2.2 42371

3. Information Availability (market penetration): Vehicles are differentiated into two
classes based on their ability to communicate in real-time with a central controller, and
are referred to as equipped and non-equipped vehicles. The properties of each class of
vehicles and their driver's assumed behavior are illustrated below:

(i) Equipped vehicles: This class of vehicles has the ability to communicate with a
central controller in real-time. Hence, these users make decisions on the selection of their
future path to their destinations, achieved through switching from their current path (if
deemed so) in light of the information received, based on a set of boundedly-rational user
behavioral rules, described in Chapter 2. The parameters used for these rules are assumed
to be fixed throughout the experiments. The mean relative indifference band (M) has a
value of 0.2 and the absolute minimum threshold bound is assumed to be one minute
for all users. The quantity nj is treated as a random variable, and assumed to follow a
triangular distribution, with mean 1} and a range 1)/2.

(ii) Non-equipped vehicles: This class of users does not have the ability to communicate
with a central controller, and these vehicles are assumed to follow the initial paths
prescribed when they enter the network. Hence, these users do not have the ability to
make decisions on switching and the only assumption on their behavior is complete
compliance with regard to the initial path they are assigned.

Design of Experiments. Three different types of experiments are designed in the current
set, based on the assignment rules and information supply strategies considered:

1. Descriptive information supply strategy with user response rules: This strategy assigns
vehicles initially to their current best path, from which they may switch if appropriately
equipped. The percentage of equipped vehicles, or market penetration, is an experimental
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factor in this set, and takes values of 0.00, 0.10, 0.25, 0.50, 0.75 and 1.00. Hence, for a
factor of 1.00, all vehicles have access to real-time information.
2. SO and UE assignment rules: For these rules, all vehicles are assumed to follow the
respective paths determined by the corresponding algorithms. The only assumption on
user behavior is complete compliance with the supplied information.
3. Descriptive strategy with UE solution as the paths initially assigned: This set of
experiments uses the UE solution from (2) as the initial set of paths assigned to vehicles
that then follow strategy (1). For the current set of experiments, all vehicles are assumed
to be equipped.

The results of these experiments are discussed in the next section.
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Figure 36. Comparison of Average Trip Times (minutes) of SO and UE
Assignments for Network Loads under Loading Profile 1
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Analysis of Results

As seen in the first set of experiments, the average distance traveled under a UE
assignment is lower than the corresponding value for a SO assignment, while the
corresponding travel times are of course lower for SO. This indicates that lower system
travel times are achieved through routing some vehicles over long (distance) paths.
Figures 36 and 37 compare the average trip times under SO and UE for loading profiles I
and II respectively. A comparison of average travel times indicates that the system
performs better under the uniform loading profile I as opposed to the peaked loading
profile II which impacts the network with large numbers of vehicles in a relatively short
time. As expected, the marginal penalty of network loading on system travel time

increases with network load.
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Figure 37. Comparison of Average Trip Times (minutes) of SO and UE Assignments
for Network Loads under Loading Profile IT

The results obtained here mirror those obtained in the first set, with increased
differentiation between the solutions provided by the time-dependent SO and UE
assignments at higher network loads, for the low to moderately high congestion levels
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generated by the experiments. Thistrend isillustrated in Figure 38 which shows the
percentage improvement of SO over UE as afunction of average network concentration
under loading profile I, and emphasizes a clear-cut demarcation in the quality of solutions
provided by SO and UE assignment rules. For example, SO gains 13.5% improvement
over UE for moderately high network congestion when the average network
concentration for the entire duration of interest is about 18 vehicles per lane-mile. Note
that the decreasing trend at very high concentrations in Figure 24 for Experiment Set | is
not observed here because these concentration levels were not reached in the second set.

13

% improvement over UE

6 12 18 24
Network Concentration (veh/lane-kilometer)
NOTE: The number by each plotted point is the corresponding loading factor

Figure 38. Percentage Total Trip Time Savings of SO over UE as a Fraction of
Total UE Trip Time Versus Average Network Concentration for Loading Profile |

Figure 39 shows the plots of average trip time versus network loading for SO and UE
assignment rules for loading profile | (asin Figure 36), and in addition the average trip
times for a strategy in which al vehicles are provided with real-time descriptive
information in the network and make switching decisions according to the boundedly-
rational user behavior rules (with a 0.2 indifference band and 1 minute threshold in the
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current case), given that their initial loading onto the network is based on the UE solution.
This curve is between the SO and UE solutions, indicating that the system performance
under a real-time descriptive in-vehicle information supply strategy superimposed over a
time-dependent UE pattern, is better than the corresponding UE solution, though it is
unclear what kind of a benchmark the UE pattern would represent in the first place. On
the other hand, the SO solution represents the best system performance that can be
theoretically obtained, and the fact that it outperforms the descriptive strategy emphasizes
the need for coordinated information supply strategies for potentially meaningful
enhancements over and above the solutions provided by uncoordinated descriptive
information supply strategies. The current set of SO solutions are slightly sub-optimal
due to the specification of local as opposed to global marginal travel times for the
calculation of time-dependent marginal shortest paths in our methodology, especially at

higher network loading levels.
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The second angle from which results are investigated relates to traffic flow theory in

the context of network level traffic descriptors.

The various network-wide traffic

descriptors used in the current analysis were defined previously. As noted earlier, the
well-established trend of decreasing speed with increasing concentration for arterials was
found to hold at a network level for both the steady-state conditions and dynamic loading
scenario. This trend is further illustrated in Figure 40, which shows the network-level
speed-concentration relationship for the UE assignment under loading profile IT where

each point represents a network loading level.
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Figure 40. Average Network Speed V (kmph) as a Function of Average Network
Concentration K (vehicles/lane-kilometer) for the UE Loading Profile II Case
(averaging is done over space and time)

The principal new element examined here arises from the time-varying nature of the
vehicular concentration in the network. Figure 41 plots the 5-minute averages of network
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speed as a function of the corresponding 5-min average network concentrations for the
duration of interest, as obtained from the SO solution of loading profile II for loading
factor 1.8, used here for illustrative purposes. The numbers 5, 10, 15 ....etc. in the figure
represent the 5 minute period starting at those times, and correspond to the points on the
plot. The same decreasing trend between speed and concentration is exhibited by the
individual short intervals. However, the dynamic nature of the process appears to lead to
two different phases: The upper layer of points reflect the first 25 minutes of the state
when the network congestion is building up. After the network reaches a certain
congested level, the speed-concentration relationship follows the lower layer (which
represents the period of time from 25 minutes to 50 minutes). This two-phase
phenomenon is worthy of additional theoretical and empirical investigation of the
underlying traffic phenomena.
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Figure 41. The Time-Dependent Average Network Speed as a Function of the Time-
Dependent Average Concentration, Based on 5§ minute Average Values for the SO
Loading Profile II with LF = 1.8

122



CONCLUDING COMMENTS

The evaluation of network performance under real-time information systems for
el ectronic route guidance has been confined to highly idealized network configurations
and limiting assumptions about various aspects of the problem, particularly user behavior
and traffic flow interactions. Theories of network performance under dynamically
varying traffic loads and real-time information availability to users are still in their early
stages of development, and methodol ogies to analyze performance of general networks
under such conditions are not available. The complexity of the problem arises from the
spatial and temporal interactions among individual tripmaker decisions, in response to the
supplied information, taking place in the traffic network. This degree of complexity has
precluded meaningful analytic treatment of the problem in genera networks. Until
advances in theory and computation succeed in resolving the formidable difficulties of
the problem, computer simulation provides a powerful aternative to analyze the time-
dependent performance of traffic networks under a variety of conditions and assumptions
regarding user behavior, market penetration and other elements that are subject to
external uncertainty or correspond to system design parameters. By providing the analyst
with a high degree of experimental control, systematic investigation of network
performance and its determinants can be undertaken under a wider range of scenarios
than are practically available for observation.

The experiments performed using the simulation-based algorithm to solve both the
SO and UE versions of the time-dependent traffic assignment problem have provided
insights of critical importance to the design of ATIS information supply strategies and
results of fundamental significance in the context of network assignment and network
traffic flow theories. The experimental results proffer an illustration of the insights that
can be obtained on the basic congtitution of the problems being addressed while
suggesting directions for future research. The first main conclusion is that the results
suggest meaningful differences in overall system cost and performance between time-
dependent system optimal and user equilibrium assignments. The second main
conclusion is that traffic networks under time-dependent traffic assignment patterns
continue to operate within the envelope of relatively smple network traffic flow
relationships that exhibit strong similarities to the traffic models established for
individual road sections.

If we take the UE assignment results as somehow indicative of the situation that
might be attained over time in a system where drivers have access to real-time on-board
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descriptive information through ATIS, the results of our experiments suggest that there is
considerable potential for system optimal, coordinated route guidance, especially in
heavily congested (though not oversaturated) networks. These results appear to
contradict unsupported claimsthat descriptive information would likely perform aswell
as normative SO route guidance because UE system costs were claimed to be very close
to SO costs. Instead, they strengthen previous recommendations (e.g., in Mahmassani
and Jayakrishnan, 1991) that coordinated information is necessary beyond a certain
market penetration level.

The results further highlight the dynamic nature of the benefits accumulated by a SO
assignment over UE. They suggest that SO is most effective when the traffic network is
moderately to highly congested. In the context of peak period traffic, this implies that
most savings through SO assignment would be achieved not at the beginning nor end of
the peak period, but in atime range in between. When the network is lightly or very
highly congested (oversaturated), an SO assignment does not perform significantly better
than UE. For relatively uncongested traffic situations, SO and UE yield almost identical
solutions.

The results indicate remarkable consistency with previous observationa and
simulation results on the relations among network-wide traffic flow variables. In
particular, network-level averages of speed and concentration are related in the familiar
pattern, though this relationship is dependent on the underlying assignment rule and time-
dependent loading patterns. An interesting phenomenon in the dynamics of traffic
network performance was illustrated when examining the time-dependent variation of
speed with concentration, whereby two distinct phases were apparent reflecting the
evolution of the loading process and congestion over the network. This phenomenon is
worthy of additional theoretical as well as observational investigation.

With regard to the effectiveness of real-time information systems, the results
highlighted the high degree of dependence of the potential benefits of uncoordinated
descriptive information strategies on user behavior and the “initial conditions’ under
which the network is used (i.e. the flow pattern upon which the information supply
system is superimposed). The meaningful differences between the SO solution and the
UE solution highlighted the potential benefits of coordinated route guidance, particularly
as the overall concentration increases in the network. However, it can be expected that as
congestion approaches saturation conditions, the advantage of SO over UE would tend to
disappear as opportunities for improvement become more limited.
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Of course, to the extent that these results are based on simulations using essentially
the same network topology, they must be treated as primarily illustrative and suggestive
rather than definitive. Considerable additional numerical and observational work is
required for this purpose. However, only now are the necessary methodological tools
available to support such investigations.

Finally, the experiments serve to demonstrate the successful implementation of the
solution concepts developed for dynamic traffic assignment in the ATISATMS context.
The descriptive simulation-assignment framework, DY NASMART, provides a very
useful tool to evaluate traffic patterns under real-time information. The algorithms
developed for SO and UE assignment are also operational, and produce results that
successfully pass engineering judgment reasonability tests. They also demonstrate the
potential of coordination in the provision of route guidance, and provide a practically
tractable basis for the kind of normative traffic assignment capability required by the
ATIS/ATMS controller.
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CHAPTER 5
MULTIPLE USER CLASSES DYNAMIC TRAFFIC ASSIGNMENT
AND REAL-TIME IMPLEMENTATION

The single user class dynamic traffic assignment problem was introduced in the
previous chapter and solved under the ideal full information availability scenario (for the
controller). This chapter extends the single user class problem to include the various user
characteristics and capabilities encountered in the real-world, giving rise to the multiple
user classes dynamic traffic assignment problem. In actua situations, the controller may
not have complete information on origin-destination (O-D) trip desires for the entire
duration of interest. As discussed in the previous chapter, this leads to a partid
information availability scenario. Thisissue is addressed by using arolling horizon
approach to implement the multiple user classes algorithm in real-time to realistic
networks.

Thefirst part of this chapter addresses the multiple user classes (MUC) problem. It
introduces the user classes of interest and discusses the problem formulation. The
solution algorithm for this problem is obtained by extending the single user class solution
procedure. The chapter further addresses the rolling horizon approach for quasi real-time
implementation of the solution algorithm for the MUC problem. After discussion of real-
time implementation issues, and description of the rolling horizon approach, the
implementation of this approach to the MUC solution algorithm is illustrated.

THE MULTIPLE USER CLASSES DYNAMIC TRAFFIC ASSIGNMENT PROBLEM
Introduction

A number of factorsinfluence actual system performance under ATISATMS. The
fraction of users with capability for one-way or two-way communication (market
penetration) with a central controller, the various information supply strategies or
assignment rules, and the user response behavior to supplied information are critical
determinants of the particular dynamic assignment strategy in any realistic scenario for
implementing ATISATMS. As noted previously, an ideal scenario from the controller’s
perspective is one where all users are equipped, are provided route guidance instructions
based on a system optimal strategy, and comply fully with the supplied information,
thereby extracting the best possible performance from the system. However, real world
conditions may differ significantly from this optimistic scenario, especially in terms of
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market penetration, the types of information users have access to, and actual user
behavior. Hence, any methodology employed to address the problem in the real-world
implementation context should account for the multiple user classes with varying
characteristics and capabilities in the traffic system.

Even under the most optimistic scenarios for ATIS market penetration over the next
decade, only afraction of al vehiclesin anetwork are expected to be equipped within-
vehicle route-guidance systems. Furthermore, equipped vehicles may possess different
capabilities, or have access to different types of information. Drivers may also respond
differently to the supplied information, with some drivers complying with the prescribed
or suggested routes, others making their own decisions based on information on current
or predicted conditions, and yet others behaving in a contrarian manner. Practical
considerations such as these form the basis for classifying users into multiple groups,
each of which has distinct characteristics in the context of implementing ATIS.

The multiple user classes (MUC) dynamic traffic assignment problem addressed
considers the problem faced by a central controller seeking to optimize overall network
performance through the provision of real-time routing information to equipped
motorists, taking into account different user classesin terms of information availability,
information supply strategy, and driver response behavior. In particular, four user classes
areincorporated in the formulation: (1) equipped drivers who follow prescribed system
optimal paths; (2) equipped drivers who follow user optimum routes; (3) equipped drivers
who follow a boundedly-rationa switching rule in response to descriptive information on
prevailing conditions (e.g. similar to AUTOGUIDE); and (4) non-equipped driverswho
follow externally specified paths, which may be historically known or solved for
exogenoudly. Given the time-dependent O-D desires for users in each of these four
classes, the formulation seeks a time-dependent traffic assignment which provides the
number of vehicles of each class on the network links and paths satisfying system-wide
objectives and respective conditions for each class.

Note that our framework also recognizes multiple user classes in terms of traffic
performances characteristics, for example trucks versus passenger cars. However, such
classes do not have direct implications on the solution algorithm, as associated
differences are captured at the level of the traffic smulator. As explained in Chapter 2,
DYNASMART recognizes severa vehicle types, and correctly represents their respective
interactions with other vehicle classes. However, such traffic performance characteristics
have no direct implication on the problem formulation or solution procedure, unlike
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classes that differ in terms of information supply and response behavior. Also note that
the four classes incorporated in the present formulation represent the four generic classes
of users that have significant implications on the solution framework. In other words,
while other classes could be envisioned, the manner in which they are represented in the
formulation and their implication for the solution methodology will most likely fall into
one of the above four categories or combinations thereof. For example, the third class of
users, those who follow behavioral rules in response to descriptive information, could
actually consist of several subclasses, each following a different set of behavioral rules or
receiving different information. Such subclasses would be treated in essentially the same
fashion as the current third class, with only minor differences in implementation details.

Formulation of the Problem

The problem formulated here represents the fully informed situation, where the
central controller has complete a priori information about every tripmaker in terms of
origin, destination, start time of the trip, and user class, and uses this information to
develop an integrated scheme that assigns to each user a path to the destination so as to
achieve system-wide objectives as well as the conditions corresponding to the behavioral

characteristics of each user class.

Problem Statement

Consider a traffic network represented by a directed graph G(N, A) where N is the
set of nodes and A the set of directed arcs. A node can represent a trip origin, a
destination and/or a junction of physical links. We consider a network with multiple
origins and destinations. The time experienced by a vehicle to traverse a given link
depends on the interactions taking place among vehicles in the traffic stream along this
arc. The analysis period of interest, taken here as the peak period, is discretized into
small equal intervals t = 1,.......... , T. Given a set of time-dependent O-D vehicle trip
desires for the entire duration of the peak period, expressed as the number of vehicle trips

r%’ of user class u leaving node i for node j in time slice t, Vi,je N,t=1,.......... ,T,and u

= 1,...., U, determine a time-dependent assignment of vehicles to network paths and
corresponding arcs. In other words, find the number of vehicles l{;‘k(u) of user class u that

follow path k(u) = 1,......... , Kl'j betweeniand jattimet, Vi,je N, t=1,...... , T, and u

= 1,..., U, as well as the associated numbers of vehicles on each arc a € A over time.
Here, u = 1,...., 4 corresponds to the four user classes described in the previous section.
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Definition of Variables and Notation
The following variables and notation are used in the formulation of the problem:
i = subscript for origin node
j = subscript for destination node
n = node in the network, ne N
a = arc (or link) in the network, ac A
u = subscript for user class, ue U
k(u) = subscript for a path in the network for user class u
T = subscript denoting the time interval in which assignment is made
t = subscript denoting current time interval
A =length of a time interval
T' = total duration (peak period) for which assignment is to be made
Tu

rj; =number of vehicles of user class u who wish to depart from i to j in period T

r;?]l((u) = pumber of vehicles of user class u who wish to depart from i to j in period T
assigned to path k(u)

grau dynamic arc-path incidence indicator, equal to 1 if vehicles of class u going from
ijk(u) €q

ito j assigned to path k(u) at time T are on link a in period t, i.e.

[6%8 =1,ifr . ison arc a during period t

ijk(u) ~ iijk(u)
=0, if arc a does not belong to path k(u)
=0,ift>t
=0, if r;;ll'((u) is not on arc a during period t]
Titj‘ll((u) = path travel time for vehicles of user class u going from i to j assigned to path
k(u) attime T
x2@ — number of vehicles (i to j) of user class u assigned to path k(u) in period T which

ijk(u)
are on link a at the beginning of period t

ditj??u) = number of vehicles (i to j) of user class u assigned to path k(u) in period T which
enter arc a in period t

;jtli‘(‘:l) = number of vehicles (i to j) of user class u assigned to path k(u) in period T which
exit link a in period t

x'2 = total number of vehicles on link a at the beginning of period t
dta = total number of vehicles which enter link a in period t

m®@ = total number of vehicles which exit link a in period t

m

129



C(n) = set of links directed towards node n
B(n) = set of links directed away from node n

Deterministic Full Information Scenario

This formulation extends the single class full information scenario, in which the
central controller is assumed to have complete a priori information on O-D desires for the
entire duration of interest. Again, this is mostly a conceptual formulation, where the
mathematical expressions are introduced for conceptual clarity. It is not a complete
formulation from a mathematical standpoint as it is not sufficient for the development of
a complete solution algorithm.
Given:

Objective function:
Min. Z¢ i Z; Zy Zg(y) (rl]k(u) ;;‘((u))

or

Min. [ T(r k(u)) Vi, j, T, u, k()]
Subject to:
L. r{i“ = 2k(u) ritjlllc(u) ,  ¥YijTu
2. I mt =Zb dw | V t,ceC(n), beB(n),n #iorj
3. xta=xtlajdt-la.mtla Vg
4. xB=3y Jk(u) 2t Zj X [rl ik(u)" ;?E]u)] Via
5. “k(u) =24 Za [8qk(u) Al , Vi,j, T, u,k()
6. 8;‘1‘2&) fre k(u)) , V1,j,1,t,a,u, k(u)
7. d@=%p ¥ 3 ¥ dfj‘;((u) ,  Vta
8. m@=3y 333 m uk(u) A
9. T <t
10. 8};‘;(‘11) =0orl

11. {rl k(2) , V1,]j, k, T } satisfy user equilibrium conditions.
12. {re ; Jk(3) , ¥V 1i,],k, T} are consistent with the boundedly rational rules
specified in DYNASMART
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13. {r}}‘l‘(@)} are known a priori V i, j, k, T
14. All variables (other than 8 ) > 0

There are two alternative forms for the objective function in the above formulation.
The first states that the total travel time of the assigned vehicles in the system is aggregate
of the product of the number of vehicles of each user class assigned to a particular path
(from a given origin to a given destination at a particular time) and the corresponding
path travel time. The assumption on identical travel experience is realistic when
assignment intervals are reasonably small (in which case there are not more than two or
three vehicles to a particular path from an origin to a destination). The nonlinearity of the
objective function arises from the fact that the travel time on the path is itself a
complicated non-explicit function of the number of vehicles assigned to the various paths
of the network, via the dynamic link-path incidence.

The second form of the objective function simply states that the total travel time of
all vehicles assigned to the various paths during the duration of ATIS application is some
function of the assignment. This objective function can be evaluated by any available
means. We do it through simulation.

Constraint (1) is a definitional constraint stating that O-D desires assigned to the
various paths should sum up to the demand (conservation at the origin). Constraint (2)
states that vehicles cannot be stored at intermediate nodes, that is, the number of vehicles
exiting from all links incident on an intermediate node should equal the number of
vehicles entering all links incident from that node at any given time. Constraint (3)
represents the conservation of vehicles on a link and states that the total number of
vehicles on any link at the end of the current time interval is the net algebraic sum of
vehicles on that link at the end of the previous time period, vehicles entering that link
during the current period and vehicles exiting that link during the current period.

Constraints (4), (5) and (6) represent the time-dependent link-path incidence
relationships which fundamentally characterize the dynamic assignment problem.
Constraint (4) represents the time-dependent relationship between the number of vehicles
assigned to various paths and their aggregation on links. Constraint (5) illustrates the
calculation of the path travel times using the dynamic link-path incidence variables. The
number of time steps in which the dynamic incidence variable takes a value 1 implies the
number of discrete time steps that a vehicle (or a group of vehicles) spent in the system,
and multiplying with A gives the actual travel time in the system. One of the most
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commonly used indicators of system performance is the total time spent by vehiclesin
the system, and the path travel times conveniently allow evaluation of thisindicator.

Constraint (6) states that the dynamic link-path incidence variables are a function of
the assignment. As noted, this fundamental fact expresses the essence of the dynamic
assignment problem. Constraints (7) and (8) are definitional constraints for the number
of vehicles entering and exiting links in the various time intervals. Constraint (9) defines
temporal correctness. Constraint (10) restricts the dynamic incidence variables to take
values of 0 or 1. Constraints (1 |- 13) reflect the conditions characterizing the behavior of
user classes 2, 3 and 4. While it is possible to express constraints (11) as variational
inequalities, constraints (12) would be more cumbersome to write mathematically
because they correspond to rules embedded in the DYNASMART simulator. The authors
have provided elsewhere a mathematically more elaborate formulation but it does not
contribute directly to the problem solution. Constraint (14) represents the non-negativity
requirement.

Solution Algorithm

This section illustrates the ssimulation-based solution agorithm for the MUC
dynamic assignment problem, obtained by extending the single user class solution
algorithm described in the previous chapter. The DYNASMART simulation model is
used to evaluate any particular assignment pattern and provide the relevant information
necessary to guide the search to the solution satisfying the desired conditions. Figure 42
illustrates the solution algorithm for the MUC time-dependent assignment problem.
Analogous to the algorithmic steps for the single user class assignment problem, the
simulation results from the current iteration provide the basis for adirection finding
mechanism for the search process, through the experienced vehicular trip times and the
associated marginal trip times.

The algorithmic steps of the search process embedded in the algorithm are illustrated
in Figure 43. It consists of an inner loop that incorporates a direction finding mechanism
for the search process for the SO and UE user classes based on the simulation results of
the current iteration. Convergence is sought by obtaining search directions for the SO
(user class 1) and UE (user class 2) components of the solution for the next iteration. The
class of (equipped) users that follow behaviora rules in response to descriptive
information based on current traffic conditions (user class 3 or BR) is not directly
involved in the direction finding mechanism of the search process. The paths of this class
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of users are obtained based on the traffic pattern that evolves in the network for the
current assignment strategy (and the behavioral rules assumed), unlike classes 1 and 2
which obtain their paths based on search directions derived from the experience of
previous iterations. Hence, from an algorithmic standpoint there is no direct guiding
mechanism involved in obtaining the paths for user class 3, other than their being
predicated on the assignment strategy for the SO and UE class vehicles. As illustrated in
the figure, they form the outer loop of the iterative procedure. They may aid or impede,
over different iterations, the progress towards convergence of the algorithm. As
indicated, the unequipped users (user class 4 or PS) are exogenous to the iterative loop of
the search process and represent constant background information (for each iteration) as
their paths remain unchanged.

Figures 42 and 43 depict the solution algorithm for the MUC assignment problem. A
brief summary of the approach is as follows:
1. Set the iteration counter I = 0. Obtain the time-dependent historical paths (paths
obtained from database) for all equipped user classes for each assignment time step over
the entire duration for which assignment is sought, as well as the paths to be assigned to
the unequipped users.
2. Assign the O-D desires (which are known a priori for the entire peak period) for the
entire duration to the given paths and simulate the traffic patterns that results from the

assignment using DYNASMART. The path for each vehicle in user class 3 (ritij’I’H) is

obtained from the current simulation experience.

3. Compute the marginal travel times (mlit21) on links using time-dependent experienced
or estimated link travel times (tt*®]) and the number of vehicles (x'21) on links obtained as
post-simulation data (from step 2).

4. Using a special-purpose time-dependent multiple user classes least cost path algorithm,
compute the least marginal time paths (based on the marginal travel times obtained in
step 3) and the shortest travel time paths for each O-D pair for each assignment time step.
5. Perform an all-or-nothing assignment of the user class 1 (SO) O-D desires to the least
marginal time paths computed in the previous step, and of user class 2 (UE) O-D desires
to the shortest travel time paths. The result is a set of auxiliary path vehicle numbers for
each O-D pair for each assignment time step t = 1,............ , T, for the SO and UE
( t,UEI

Yijk
6. Update paths and the number of users assigned to those paths, for the SO (r{i’kso’ : +1)

) user classes.

133



and UE (&5, UE, I"'1) user classes. Update of paths is done by checking if the path

ik

identified in step 4 already exists (i.e., has carried vehicles in at least one prior iteration)
for that O-D pair and including it if it does not. The update of the number of vehicles
(assignment of vehicles to the various paths currently defined between the O-D pair after
the path update) is performed using the Method of Successive Averages (MSA), which
takes a convex combination of the current path and corresponding auxiliary path numbers
of vehicles, for each O-D pair and each time step. A detailed description of MSA is
provided in Sheffi and Powell (1982). Note that other convex combination schemes could
equally be used.

7. Check for convergence using an € -convergence criterion (currently, we use the
convergence of the path vehicle numbers for both SO and UE user classes as the
criterion).

8. If convergence criterion is satisfied, stop the program. Otherwise, update the iteration
counter I =1 + 1 and go to step 2 with the updated data on paths and the number of
vehicles assigned to each of those paths for the SO and UE user classes; and with the
paths obtained from step 2 of the current iteration as the initial paths for vehicles of user
class 3 for the next iteration. The paths for vehicles of user class 4 are constant and are
carried over unchanged to the next iteration (as illustrated by their exogenous assignment

to the iterative loop).

ROLLING HORIZON FRAMEWORK FOR REAL-TIME IMPLEMENTATION
Introduction

The solution algorithms discussed so far for "complete information" formulations are
intended as the basic core methodologies to be implemented in a dynamic assignment
framework for real-time operation. Rather than assume that O-D desires are known a
priori for the entire planning horizon, a more realistic scenario is one where the controller
is assumed to have information on O-D desires for only a "short" duration into the future
with a high degree of confidence. This partial information availability scenario is
formulated using a rolling horizon approach which is well-suited for on-line
implementation of the solution algorithms developed for the single and multiple user

classes problems.
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Rolling Horizon Approach

The basic idea behind the rolling horizon approach is that current events will not be
influenced by events “far” into the future. In the context of the ATIS problem, thisis
analogous to stating that vehicles currently assigned will not be influenced by vehicles
assigned “far” into the future as the currently assigned vehicles will probably be out of
the system by that time. The stage length h in Figure 44 depicts that length of time (its
value in actual problemsis network specific). The roll period | represents the short
duration into the future for which O-D desires are available with reasonable reliability.
To make an assignment of vehicles to various paths for the current period, the controller
requires knowledge of O-D desires for the rest of the stage length as these O-D desires
are expected to influence current assignments. These O-D desires may be forecasted
based on historical data and current information. The O-D desires beyond the stage
length h are assumed to be zero. The situation is now analogous to the complete
information availability scenario, abeit, only for the duration covered by the stage length
h. The system is solved for optimality only for the duration of the stage length and O-D
desires for the roll period (which are known with certainty) are assigned to the paths
determined. The time frameisnow “rolled” forward by alength equal to the roll period
and the above process is repeated till the end of the duration for which ATIS is applied to
the system. Hence, a series of optimizations are performed till the planning horizon is
covered.

The path assgnments in each stage are determined for the entire stage, but
implemented for only the roll period (as only the demand for this period is available with
certainty). A number of pertinent questions arise at this point. How far is “far”? What is
the “optimal” stage length h? What is agood value for theroll period |? How accurate
are the forecasted values for future O-D desires? Is there a need for feedback to check if
the assumptions made were realistic? How robust is the solution vis-a-vis the predicted
O-D desires. These questions need to be addressed while implementing the solution
methodology for the rolling horizon framework. The values of the various parameters are
expected to be problem specific; however, appropriate guidelines can be devel oped
through numerical experiments and test applications. This approachadso emphasizesthe
need for compatible O-D demand forecasting models.
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Figure 44. The Rolling Horizon Approach

Real-Time Implementation

Figure 45 illustrates the rolling horizon framework to implement the solution
algorithm for the MUC dynamic assignment problem in real-time. The procedure is as
follows:
1. Obtain the O-D desires for the first roll period, and the forecasted O-D desires for the
rest of the first stage. Obtain the time-dependent historical paths (paths obtained from
database) for equipped user classes for each assignment time step in the first stage, as
well as the paths to be assigned to the unequipped users.
2. Perform a complete run of the MUC agorithm till convergence for the O-D desires of
the current stage. Make an on-line assignment of the O-D desires for the current roll
period to paths to their destinations. If the end of the time horizon for which an ATIS is
desired is reached, stop. Otherwise, continue (go to step 3).
3. Shift the current stage by alength of time equal to the roll period to obtain the next
stage. The next stage now becomes the current stage.
4. Update the origins and positions of all vehicles from the previous stage that did not
reach their destinations by the end of that stage.
5. Update the O-D matrix for the current stage based on O-D desires for the current roll
period, forecasts for the O-D desires for the rest of the current stage, and O-D desires
from the previous stage who have not yet reached their final destinations. If re-routing of
previously assigned vehicles is not desired, treat vehicles aready in the network as
members of class 4, who follow pre-specified paths (in this case obtained from the
previous stage). If re-routing is desired, keep already assigned vehicles in their respective
classes and update their origin to the current location (or appropriate downstream node).
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6. Obtain the initial paths for the current stage based on historical data and the link travel
time experience from the previous stage. Go to step 2.

In the on-line implementation of the procedure, there are three possible scenarios
regarding the relative magnitudes of actual and forecast O-D trip desires. Theideal case
is when the forecasts are accurate for the entire stage under consideration. The vehicle
paths obtained in the solution for the roll period are then as good as one could expect
them, unless changes take place in the network characteristics, such as a capacity-
reducing accident (in which case the problem should be re-solved on-line to determine
new paths for equipped classes in conjunction with applicable traffic management
strategies).

However, forecasts may also either underestimate or overestimate actual demand,
corresponding to the second and third scenarios respectively. In both cases, the quality of
the paths determined for vehicles generated in the roll period may suffer, though thisis
inherent in any decision strategy operating under uncertain conditions. The robustness of
the solution vis-a-vis the quality of the O-D forecasts, and the implications for the various
parameters of the implementation scheme (particularly the lengths of the roll period
solution stage and O-D prediction horizons), are undoubtedly the most important issues
that need to be addressed in future numerical and observational research. From the
standpoint of the actua implementation of the procedure, both underpredication and
over-prediction scenarios can be accommodated. In the former (underprediction), there
will be fewer actual vehicles than incorporated in the solution. This does not pose any
implementation difficulty on-line as all actual O-D trip desires will have paths available
to their respective destinations. In the latter scenario (over-prediction), the “additional”
actua vehicles will be assigned to paths selected randomly from the optimal path set for
their corresponding class. Since user class 3 vehicles make their own decisionsin real-
time, the rolling horizon procedure serves only the purpose of determining good “initial”
paths for them. Finaly, user class 4 vehicles do not receive paths from the central

controller.
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N-LINE IMPLEMENTATION
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Figure 45. Real-Time Implementation
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CHAPTER 6
THE PATH PROCESSING COMPONENT OF DYNASMART

This chapter describes the algorithmic elements of the path processing component of
DYNASMART, namely the k-shortest path computation and update procedures. The time-
dependent least time and least cost algorithms used in conjunction with the time-dependent
system optimal and user equilibrium assignment procedures described in Chapters 4 and 5
are discussed in the next chapter. This chapter is broadly divided in four sections. The
first is an extensive introduction and literature survey section pertaining to k-shortest path
algorithms and implementation issues. Next, the k-shortest path and the update path
agorithmsfor asingle user class, asimplemented in DY NASMART, are analyzed; efficient
implementations are discussed, and comparative results are presented for the adopted as
well asfor aternative designs. The third section extends the previous methodol ogies to the
multiple user classes case. In the final section, “update” versus “calculate” strategies are
assessed.

INTRODUCTION AND LITERATURE REVIEW

The need to calculate more than one shortest path (between a given origin and
destination) in DYNASMART arises for several reasons including: (1) the need to model
vehicle movement patterns under information, (2) the need to give alternative paths to
drivers, (3) the capability to generate and represent a realistic choice set for driversin
connection with the user decisions component and finally (4) the need to improve the
computational efficiency of the overall path computation component by combining update
and calculate strategies.

An extensive literature review was carried out to identify the algorithms that could
provide best performance in the DYNASMART environment. For this purpose three
agorithms were designed, implemented and actually coded. The algorithms were tested on
real street and random networks, and the best of them isincluded in DYNASMART. The
computational results are discussed in the second section.

Terminology and Notation

This section contains formal definitions of the terms commonly used in the shortest
path literature. Most of the notation and definitions follow Dial et a’s (Dial, 1978). A
directed network or simply a network G(N,A) consists of afinite set of nodes N and a
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finite set of arcs A. An arc a € A may be also denoted as ordered pair (i,j), referring to the
fact that an arc is conceived as beginning at node i € N, and terminating at node j € N.

A directed path is a finite sequence of nodes P={n1,ny,...,ny), where nj is the origin
node of the path and n; is the destination node. A path P is called simple path, if nj#n;
Vi,je Pandi # j. Let Cij denote the nonnegative elements of a cost matrix C for any arc

(i,j). We define the cost of the path P as:
r~1
?\.P= Ecni 3
i=l, j=i+1
A path P between two nodes is called the shortest path if Ap is the minimum among all
paths between these two nodes. If the procedure that calculates this path is rooted at the

origin node, then the cost of the path to node r is called label of the node r and is denoted as
Ar.

Literature Review
Algorithms

A number of methods have been proposed since the late 50's for the solution of the
shortest path and k-shortest path problems, after the pioneering work of Moore (1959) and
Dijkstra (1959). An excellent review of this early work was done by Dreyfus (1969) and
Pollack (1961a). Much work has been also done on implementing the proposed
algorithmic ideas, especially that of Dial et al for the single shortest path (Dial et al., 1979),
and Shier for the k-shortest path case (Shier, 1974 and 1979).

Two versions of the k-shortest path problem have been investigated over the past thirty
years. In the first version, no path is allowed to contain repeated nodes; algorithms for this
type of problems have been investigated by several authors, especially Yen (1971a),
Lawler (1972, 1976, 1977), Bellman et al (1960), Minieka and Shier (1973), Sakarovitch
(1968), Fox (1978), Perk (1986) and possibly others. In the second version, paths are
allowed to contain repeated nodes. This study is focused on the second category of k-
shortest path algorithms. The loopless approach has been ruled out because it is very
demanding computationally, and its computational performance is not expected to be under
the acceptable time limits for a real-time system. Especially if repeated nodes do not
commonly occur--as usually happens for large street networks--then it is not compelling to
use a loopless path algorithm.

According to Dreyfus, the first efficient algorithm that calculates k-shortest paths
allowing loops was developed by Hoffman and Pavley (1959). They defined as a
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deviation from the shortest path, any path that coincides with the shortest path from the
origin up to some node j then deviates directly to some node k, then reaches the destination
node via the shortest path from k. If all such deviations are computed between two nodes,
then the second best path can be determined as the minimum among the set of deviation
paths. The algorithm first calcul ates the shortest path tree from all nodes to a given
destination. Next, the deviations from the second path are explored and the third best path
is noted among the deviations of the second best path and those remaining in the first
deviation set. If the average node has d outgoing links, and the average shortest path
contains m links, an average problem requires md steps, beyond those for calculating the
shortest path tree, to find the second shortest path. However, the subsequent paths require
significantly more computation time to find than the first one.

Dreyfus suggested some modifications that appear to increase the efficiency of this
algorithm, but no implementation has been reported so far in the literature. Fox (1973)
studied this Dreyfus-Hoffman-Pavley method and proposed data structures for the lists the
agorithm needs to keep. Specifically he proposed a heap structure for the list that keeps all
the sub-optimal paths for every node. This structure is a binary tree that always keeps its
least element in the first position, and requires log2N operations to insert and delete an
element in aN-element list. This structure works better when alarge number of pathsis
sought, k>10logN. Fox considers also a perturbation scheme that safely breaks ties.
Specifically, he proposes picking a small number b and then generating uniform random
numbers in the interval (O,b), and adding a distinct one to each arc cost. This indeed
ensures that no ties or zero cost loops will result during the process.

Another early algorithm that is worth noting has been proposed by Pollack (1961).

The agorithm can be applied when k is small, and appears especialy competitive if only
two paths are sought. His method can be described as follows:
Given the shortest path from node i to node j, the length (cost) of each link along this path
IS set, in turn, to infinity and the shortest path for the resulting network is found. The best
of these paths then is the second best path. An interesting feature of this scheme is that all
the shortest path cal culations, each corresponding to a particular arc set to infinity, are
completely independent of each other. This makes this approach a possible candidate for
massively parallel computations. Also this procedure could be easily transformed so that
time-dependent k-shortest paths can be calculated for a given OD pair.

Another significant contribution that has attracted considerable attention is a paper by
Bellman and Kalaba (1960), who proposed an entirely different procedure. If hki isthe
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length of the kth shortest path from node i to destination node N and if ming(x1,X2,...,Xp)
is defined to be the k! minimum element of the set x=(x1, x2,...Xy) then AK; is

characterized by the following relations:

. J# o~ 0k
K41 _ m1nk+1(ClJ+7Lj)
AT =min k+1
minf( (Cij+7£j )

(i=1,--,N-1) (1)
ALy = mint( Ciny +4%)

The term mink+1(Cij+lki) determines the value of the kth best path originating at node i
and deviating from the shortest path at that node i. The term mink(Cij+7uk+1i) evaluates

the best path consisting of any first arc, plus the second best continuation. This approach
performs better than the previous ones when more than two paths are sought, while
Hoffman-Pavley's procedure outperforms for k=2.

In connection with these two algorithms, Dreyfus proposes a procedure that stems
from the previous ideas, but seems to be more efficient computationally. However, it is
presented only theoretically and no details on implementation are given. Lawler (1976)
also discusses this approach and clarifies a few of its aspects; however, he does not
present any formal implementation design for it.

The similarity in algebraic structure between the ordinary shortest path and the k-
shortest path problems was recognized and studied extensively by Minieka and Shier
(Minieka, 1974; Minieka and Shier, 1973; Shier, 1974, 1976 and 1979). They developed
a whole class of solution methods for the k-shortest path problem utilizing strategies shown
to be efficient for the ordinary shortest path case. In particular, the basic label setting and
label correcting schemes for the single path problem were shown to be applicable to the k-
path case. Several of these algorithms were implemented and tested for a wide range of
network structures by Shier (1979), in what appears to be the most comprehensive
implementation work for this class of problems. The main label setting and label correcting
schemes used in the present study have been motivated by Shier's work.

There appears to be nothing reported in the literature on computing shortest paths
simultaneously for multiple user classes; similarly, the literature is very slim for update
path algorithms. A dual simplex algorithm that computes paths for one destination given
that the paths to another close destination are known was presented by Florian et al.
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(1981). This approach, however, was not found to be directly applicable in the context of

this research.

Review of Implementation Aspects

Considerable progress has been made in the past three decades on applying computer
science techniques in the design of algorithms, especially in the Operations Research
community. Shortest path algorithms are no exception in this respect. Most of the
attention has been given to designing data structures that manipulate efficiently the SE list,
although network representation, and efficient storage of the shortest path trees have also
been studied extensively. Such efforts, in combination with computer hardware evolution,
have dramatically improved the computational times for most shortest path approaches (Dial
et al., 1979; Fox, 1978; Bertsekas, 1992). In this section, we review the data structures
and implementation schemes that are applicable to the k-shortest path case.

An early implementation of a label setting scheme has been proposed by Dial (1969).
Its chief feature is the data structure of the SE list. It uses an "address calculation scheme",
which is also known as a bucket structure (Figure 46).

Active —_—
Bucket ! Na 2 Nb

2 2 ch Ndz Ne

il

- — -

K 2 Nyz Nz

Figure 46. Bucket Structure

Nodes are arranged into the buckets according to the value of their label. Inside a bucket,
the nodes are connected by a double linked list and sorted according to their label sizes. If
the label of a node is updated, this node is moved to another position in the list, or into
another bucket. This can be done in a two-step operation because the double linked list
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holds the exact position of its elements in the structure. Moreover, this structure always
holds the least label node in the first position of the top bucket, which is advantageous for
label setting algorithms. The most costly operation for this structure is the node insertion,

and therefore its efficiency depends on the number of operations associated with the node
insertion. Thisisin turn depends on the bucket size, the number of buckets, and the
variance of the arc cost values. Extensive description of this data structure can be found in

Aho et al. (1983). This implementation can be coded using one-dimension array pointers,

each pointing to the first node of alinked list. The linked list can be represented by an Nx2

array. This scheme has been implemented by Shier for the k-shortest path case with very

encouraging results.

Gilsnn and Witzall (1973) were among the first to test the above scheme for awide
range of networks, and compare it with label correcting schemes. They implemented and
coded three label correcting and five label setting algorithms, and performed a number of
comparison tests on random networks. They concluded that Dial’s label setting approach
was performing better than their label correcting designs for most of the networks
considered. However, none of the label correcting designs that they coded would be
considered efficient today.

Van Vliet (1978) also implemented Did’ s algorithm aong with four other designs,
including one label setting algorithm with a heap data structure for the SE list, and a label
correcting with Pape-D’Esopo’s double ended queue. Both of these structures are
employed in this study for the k-shortest path case. It is worth noting his conclusions
about the four factors that affect the efficiency of such structures, namely: network size,
mean link cost, network shape and ratio of number of links to number of nodes.

Efficient data structure designs for label correcting SE list has been the subject of
extensive research after the introduction of the algorithm by Moore. Pape (1974), Golden
(1976), Pallotino (1984), Pallotino and Gal10 (1986) and Did et al. (1978) among others
investigated a number of designs, from simple linked queues, circular lists, stacks, double
linked lists, up to double two ended queues and double ended queues. Almost al the
mentioned studies performed comparison tests among a number of different structures.
Most of these results indicated that the double ended queue (deque) tends to perform better
for large sparse networks. This structure is discussed extensively in the implementation
section of this chapter.

Finally, the newest family of shortest path algorithms, the PSP algorithms, introduced
by Glover et a are implemented in Glover (1985). For the single path case, two smple
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lists are used without any internal arrangement. The algorithm examines the nodes from
the first list in a FIFO fashion. When this list is empty the second list is scanned
sequentially from the beginning to the end and the nodes with labels less than a threshold
value are inserted at the end of the first list. This ssimple structure has been proposed and
implemented by Glover et a (1985). Transformation of this structure for the k-shortest
path caseis analyzed and implemented in this study for thefirst time.

Extensive implementations of k-shortest path schemes, both label setting and
correcting, were studied and proposed by Shier (1979). The basic scheme for all of them
was described in the algorithms review section. A k-vector label structure was used for
every node. Five designs were implemented and tested. Thefirst isabasic label correcting
agorithm (BLC), a scheme that scans every node at every iteration; this scheme proved to
be very inefficient. Next is an ateration flag (AF) agorithm, a simple array structure,
called flag, that distinguishes nodes as eligible or not eligible for scanning. This scheme
performed satisfactorily for small sparse networks, but not so well for larger or denser
networks. The third approach tested is a variant of the BLC algorithm, a double sweep
scheme that alternates forward and backward iterations until no improvement in any of the
k-vectorsis possible. The last label correcting algorithm tested uses a simple FIFO list for
the SE list, implemented as a circular list with two pointers, one to the top and the other to
therail of thelist. Nodes are inserted at the tail and deleted from the top of thelist. A one-
dimension array of size N, similar to that used in the AF algorithm is employed to detect
whether anode is dready in the list. These four label correcting schemes were compared to
a rather efficient label setting design based on Gilsnn and Witzgal’'s (1973)
implementation of Dial’s algorithm. In Shier’s modification, a k-vector label is kept for
every node. Recognizing that the components of each vector arc kept in strictly increasing
order by themselves, since the already scanned (permanent) labels will always precede the
unscanned (temporary), an identifier array, similar to that of SL method, is used to detect if
anodeis already in the bucket structure. However, the author did not describe the
implementation details of the double linked list of each bucket. The comparative tests
performed showed superiority of the last label setting implementation. This should have
been expected because the particular implementation scheme of the label setting procedure
is highly efficient and advanced, unlike the label correcting implementations tested.
Designs using deque data structures would have given better results.

Theimplementations developed for DY NASMART and the tests performed to evaluate
aternative designs have benefited from Shier’ swork. All three schemes implemented here
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are expansions of the smple shortest path case. However, unlike previous
implementations, this study has gone beyond simple modifications of single path cases to
take advantage of the specia structure of the k-path case, resulting in more efficient
designs. The specific details of these procedures are given in the next two sections.

SINGLE USER CLASS
Analysis and Design of the k-Shortest Path Algorithm

In this research we compare three basic k-shortest path schemes: alabel setting, alabel
correcting and a hybrid scheme. The label setting scheme employs a heap structure for the
scan eligible (SE) list. This scheme had been implemented previously in an earlier version
of DYNASMART (Jaykrishnan, 1992). The structure tested here differs slightly from
Jaykrishnan’s implementation in some details that lead to better execution times for some
classes of networks. In addition, the heap structure has been regenerated to produce
programs coded by the same programmer, so that objective comparisons can be made.
Moreover, the heap structure is one of the most efficient designs for label setting
algorithms, and therefore constitutes the best choice for testing this class of algorithms.
The second approach tested is alabel correcting algorithm with double ended queue design
for the scan eligiblelist. Different possible strategies that take advantage of the k-vector
structure of the labels are evaluated. In depth analysis of the mechanisms of the label
correcting approach was also performed. Third, amodification of Glover’s original PSP
agorithm for the k-shortest path problem was designed and implemented.

In this report, only the label correcting agorithm is extensively discussed, because its
performance was found to be superior to the other two, and is as such included in the
current version of DYNASMART. In what follows, it is assumed (with no loss of
generdlity) that node 1 is the given origin node and that the k-shortest path lengths (times,
costs) to al nodes of the network are sought. The basic steps used by alabel correcting
agorithm are outlined below. Explanation of the basic terminology used here can be found
in the first section. No label is permanently set’ by this approach before the algorithm
terminates.

Label Correcting K-Shortest Path Algorithm

Sep 1 Initiaize the labels of all the nodes in the network with an initial upper bound.
That is, assign a k-vector hj=(hJ ,LJ2.. . .,hjk) to every node j, where the components of
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the vector A; are listed in increasing order. While several approximations could be used to
begin the process, it is convenient to use the initial guess:

A, = (0,e0,...,0)

lj = (o0,00,...,00...) Vj,j#1
Step 2: Create a list that will contain all the nodes that are 'eligible to be scanned', (SE)
list, and insert the node 1 into it. By ‘eligible to be scanned!, it is meant that these nodes
have the potential to reduce at least one of the labels of their succeeding nodes. The
meaning of scanning is explained later.
Step 3: Select the top node from the SE list. If there are not any other unscanned
components of the k-vector label of this node, delete the node from the SE list and scan it.
If there is an unscanned label associated with this node, leave the node in the SE list. Let i
denote the chosen node, and j any node reachable from i. Scanning has the same definition
as in the label setting case. The scanning procedure can be summarized again as follows:
If Aim+Cij < Ajk then replace Ajk by Aim+Cij, and
insert node j in the SE list (if it is not already there). Otherwise do nothing.
This procedure is repeated for every m=1,....k and for every je I"(i). If the SE list is
empty, go to step 5.
Step 4: Repeat Step 3.
Step 5: Terminate the procedure. The k-vector label A; for every node i, contains the k-
shortest labels from the origin node to node i.

This algorithm will work even if some of the network arcs have negative costs, as long
as no negative cycle exists in the network. Proof of this algorithm can be found in Tarjan
(1988). The fact that the node chosen to be scanned from the SE list is not constrained to
be the minimum label node (as in the label setting procedure), makes Step 3 of this
algorithm less expensive computationally than label setting. The advantage of this
approach is that the search, deletion and insertion in the SE list require just a few
operations; the disadvantage is that a node may enter the SE list multiple times.
Consequently the computational time required by Step 3 (denoted by ) is inherently very
small, while the number of iterations is larger than kN. Considerable effort has been
directed at reducing this number of iterations. Several data structures have been proposed
in the literature for this purpose, especially for the ordinary shortest path case. Some
extensions to the multiple path case have been proposed by Shier, as discussed in the
review section. However, no structure has been proposed specifically for the k-shortest
path case. This is one of the objectives of this study.
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In the next section, a method is proposed to dramatically improve the effectiveness of
any label correcting approach for k-shortest path problems. This method, which can be
applied with any SE list structure, takes advantage of the fact that k-vector labels are
needed instead of just one label. The SE list in this research is modeled as a double ended
queue (deque), although other structures are also investigated. The implementation details
of this structure are given in the next section. Some theoretical considerations are
discussed in this section.

Front Insertion

l_'

Deletion

Back Insertion

Deque —————

Figure 47. Double Ended Queue (Deque)

As shown in Figure 47, the deque isa simple linked list where the insertion can be
done at both ends, while deletion takes place only from the front end. The deque design has
been reported to outperform others for label correcting algorithms for ordinary (single)
shortest path problems. However, no implementation for the k-shortest path case has been
reported.

Implementation of the K-Shortest Path Algorithm
Network and Path Representation

A network may be represented in acomputer in several ways, and the manner in which
it isrepresented directly affects the performance of agorithms applied to the network. The
most popular way of storing a network is to use alinked list structure. In this method, all
the arcsthat begin at the same node are stored together and each is represented by recording
only its ending node and length. A pointer is then kept for each node (heading) to indicate
the block of computer memory locations for the arcs beginning at thisnode. The set of arcs
emanating from node i is called the forward star of node i. If the nodes are denoted
sequentially from 1 to N and the arcs are stored consecutively in memory such that the arcs
in the forward star of node i appear immediately after the arcs in the forward star of node i-
1, then this method, called the forward star form, requires only N+2A units of memory.
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Throughout this section we assume that the network is represented in forward star form.
The forward star structure for the example in Chapter 2 is shown in Figure 48.

A 1 p————» 2 3
B 4 3 10
C 6 I 4 8
D 8 4 2
E 10 5 12
—> 4 2
5 6
> 1 4
3 2
5 4

e NIL

Figure 48. Forward Star Network Representation

A similar structure that may sometimes be more appropriate is a backward star form.
It has an analogous structure, with the nodes that precede a node recorded in its backward
star. Thisformis particularly useful if the shortest path tree isrooted at the destination.

Another related representation issue is the storage of the resulting k-shortest paths. An
efficient way is to use pointers to the previous node (along the path). Thisis used for the
ordinary shortest path case and can be extended to the k-path case. For each element of the
k-vector label atwo-dimension pointer array is defined. The first dimension holds the
previous node in the path and the second dimension the rank (k) of the label of this node.
Thisis shown diagrammatically in Figure 49.
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Figure 49. Path Storage Example

| mplementation of the Algorithm

In a previous section we introduced the basic scheme of a label correcting agorithm
and proposed a double ended queue (deque) structure for the scan eligible (SE) list. The
objective here is to minimize the number of reentries of a node in the list.

The deque structure has been implemented for the ordinary path case with very good
results for abroad class of networks, including transportation networks. It is easy to
implement in any general purpose high level language, and does not require complicated
structures or pointers. In order to implement it, one needs to specify, for every node
updated by the algorithm, if the nodeis currently in the SE list, or if not, whether it has
been in the list in the past. Depending on the answer, the node is inserted from a different
end in the deque.

Furthermore, some way of representation is needed for the internal arrangement of the
nodes in the deque so that the basic insertion and del etion operations can be accomplished.
Pallotino and Gal 10 (Pallotino, 1984; Gal10 and Pallotino, 1988) have extensively studied
different SE list representations, including the deque, and proposed a one-dimension array
of size N that takes the following values:
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O  if thenodeisnot currently in the Deque
and it has never been in there before.

-1 if thenodeis not currently in the Deque but
it has been in there before.

Deque(i) =
i where j isthe next node in the Deque, if it is

currently in the deque and it is not the last node in the
structure.

0 if itisthe last node in the Deque.

In addition to these, two pointers must be used for the degque: one pointing to the first
element of the deque (FirstDeque) and one at the last (LastDeque).

Next we define the following basic operations of the deque: creation, insertion,
deletion. The creation is an initialization procedure that must take place once at the
beginning of the program. It assigns the values. Deque(i)=O V iE N-{ 1} and
Deque( 1)=9999999 The deletion of a node from the deque consists of identifying the first
element of the deque, and then deleting it. This is accomplished using the FirstDeque
pointer to pick the first element and then to move this pointer to the next node by assigning:

FirstDeque=Deque(FirstDeque).

Finally, the insertion operation inputs a node in the deque. If the deque is empty, then
the inserted node is named first node and last node at the same time and its Deque(Node)
pointsto infinity. If thelist is not empty, then the input node isinserted at the beginning or
at the end of the structure depending on its Deque(.) label value. Both operations involve
two steps:

If Deque(Node)=0 then
Deque(Node)=FirstDeque
FirstDeque=Node

Else If Deque(Node)=- 1 then
Deque(LastDeque)=Node
LastDeque=Node
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A node is inserted in the deque because its k-vector label has been improved. When
we delete this node from the deque to scan it, we need to know the specific label
component that has been improved from this node’s label vector, so that it can be used to
update subsequent nodes. Therefore, when anode isinserted in the deque, it must carry its
label value with it. Thisis accomplished in the label setting case with an ID pointer to this
specific label in the node' s label vector. A similar concept could also be used in the label
correcting case. However, it is not important to use just one variable as an ID for the
deque, because no internal arrangements are taking place inside it. More than one
identification variable (or even part of the k-vector label) can be assigned to the node
entering the deque. Another difference with the heap (in the label setting case) is that the
latter is intended to support a scheme that must always scan the minimum label node.
Therefore the elements in the heap are arranged according to their corresponding label-
components. The same node may occupy several slots in the heap if more than one of its
labels have been improved. Each instance (of the same node) is scanned separately
according to the corresponding label. This can be avoided in the label correcting case.
Each node in the SE list can have more than one label associated with it, instead of multiple
instances of the same node with different labels. When a node is deleted and scanned, all
its labels can be scanned simultaneously. This leads to substantial savings in the execution
time of the agorithm. This design is shown diagrammatically in Figure 50.

Thisdesignis not asimple extension of the one for the ordinary shortest path. [t takes
advantage of the fact that k paths are sought and simultaneously calculates as many of these
paths as possible. It does not depend on the specific SE list structure. The same scheme
was a so applied in conjunction with Glover’s PSP agorithm.

Another implementation aspect of this approach isthe searching-sorting of the k-vector
label. Every timeanew label iscalculated for anode, it must be compared to the maximum
component of the k-vector label for thisnode. If greater than this maximum value, the [abel
is rgjected; otherwise it must be included in the label structure and properly placed
depending on its value. In the label setting approach this is not a problem since the label
setting property guarantees that a scanned label is aways the minimum. But for alabel
correcting implementation thisis an important and time consuming task. There are several
ways to sort the incoming elements of the label structure: from simple naive sequential
comparisons, to binary trees and strategies based on Fibonacci numbers. The fact that the
number of desired labelsisin the order of at most 10 led usto reject “advanced” structures
with high associated overhead cost (Aho et al., 1983), and to use a simple linked list
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structure. This structure was implemented using internal array pointers to the next smaller
label in the structure. An example of such a structure is shown in Figure 51.

k Label k Label k Label k Label k Label

2 12 1 {7 1[9] |3]11 1 |17
2 (12 2 (8 3 |10
3 111 |
C x AF BF= E 3D | Infini
FirstDeque LastDeque

Figure 50. The Structure of the Deque with More than One Labels Per Node
Label Pointer

1 56 8
2 34
3 8 IL
4 23 10
5 11 3
First Label Pointer ---> 6 89 1
43 2
8 45 7
17 5
10 22 9

Figure 51. A Typical k-Vector Label Structure for k=10

A pointer (First Label Pointer) is used to indicate the largest element in the structure. Every
time a new label is obtained from the algorithm for this node, it is first compared to the
label corresponding to this pointer. If it is smaller and must enter the structure, it takes the
position of the largest label. Then the internal pointer must be arranged so the new label is
placed properly. This is done sequentially by comparing the incoming element to the
existing labels from the largest to the smallest.
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This procedure was selected among severa other aternatives. We decided to have the
labels in descending order after noting that there is a higher probability for a smaller label to
be produced earlier, because in general paths with more arcs tend to be longer.

Next, we summarize the entire algorithm using the implementation approaches
discussed:

Sep I: Initidlize al the label vectorsto 999999, except the first label of the origin node,
which takesvalue 0. Initidize the first label pointer of the origin node to 1.

Sep 2: Create the deque, and insert node 1 into it, with associated unscanned label 0.
Initialize al the Deque(i) pointersto value O except for the origin node; its Deque(.) pointer
takes the value 999999.

Sep 3: Delete from the deque the first node and name it CurrentNode. If the FirstDeque
points to 999999, then go to step 5. For every label associated with this node scan all

neighbor nodes and update their labelsasfollows:
Calculate the sum hmi+Cij , wherei is the CurrentNode, | is a neighbor node, and

hmi is an unscanned label of nodei. If thissum islessthan the largest label of node j,
then include this label into the label structure of j.
If node | isaready in the deque, add this new label into its label structure as an unscanned
one. Otherwise, insert the node in the deque with the new label unscanned.
Sep 4: Go to step 3.
Sep 5: Terminate the process. The k-vector label of every node contains the k-shortest
paths from the origin node to this node.

Computational Testing and Results

The results of computational tests to evaluate and compare the methods implemented
are discussed in this section. A number of randomly generated shortest path problems
were solved, along with areal transportation network, using the same computer (CRAY Y-
MP/8 supercomputer) and the same compiler (UNICOS CFI77 FORTRAN). All the
codes were implemented by the same programmer and no attempt was made to take
advantage of any of the advanced hardware features of CRAY at this stage. Each test
problem was run 50 times using different origin nodes randomly selected but consistently
used with every code executed on that network. The average execution timefor the 50 runs
Is reported in each case. Every effort was made towards efficient code design.
Subroutines were unified into the main program for the test runs so that no timeis spent for
subroutine calls.
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The test networks consist of three sets of random networks and one real large urban
street network, that of the core area of Austin, TX, consisting of 625 nodes and 1742 arcs.
The random networks were generated using a specia purpose random network generator
(Ziliaskopoulos, 1992).

The following two tables present execution times (in CPU milliseconds) for a series of
computational experiments designed to study the relative efficiencies of the three tested
schemes: LC for label correcting with degue list structure, LS for label setting with heap
structure, and PSP for modified version of Glover’s partioning algorithm with deque
structure.

Table 20. Computational Results in CPU Milliseconds for k=2

100N 500N |1000N [1500N [2500N |625N
250A |1250A [2550A 4500 |7500A | 1742
lic 60 4.08 1099 1829 [3166 |4.78
lLs 1.91 1405 [3397 |s680 10445 | 1462
[ psp 139 |5.87 1148|1859 [2538 [6.17

Table 21. Corn

utational Results in CPU Milliseconds for k=5

100N [|s00oN | 1000N | 1500N [2500N | 625N ],

x0A | 12s0A | 2550A |4s00A | 7500A | 1742A
Lc 131 9.88 3023 |4585 [e318 |1015 |
LS 567 M4080 [oa71 |16046 29400 |4206 |
PSP 207 1076|3143 [331 5791 | 1095
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Table 22. Computational Results in CPU Milliseconds for k=10

100N 500N 1000N | 1500 N |[2500N | 625N

250A 1250 A | 2550 A | 4500 A | 7/500A 1742 A
Lc 3.66 25.13 84.60 120.78 2243 1 23.82
LS 12.7 88.33 21072 ]345.04 642.5 92.55
PSP 3.11 2941 83.72 94.77 182.15 23.77

Table 23. Comgutational Results in CPU Milliseconds for k=15

100N 500N 1000N 1500 N | 2500 N 625 N
250A 1250 A 2550 A | 4500 A 7500 A 1742 A
LC 71.26 47.72 167.89 231.98 | 443.56 44.85
LS 21.05 176.26 435.91 752.80 1196.58 | 157.45
PSP 8.13 46.95 100.32 117.82 367.46 48.98
Table 24. Means and Standard Deviations for k=5
100N 500N 1000N 1500 N 2500 N 625 N
250A 1250 A 2550 A | 4500 A 7500 A 1742 A
(mean | (mean |(mean |(men |[(mean | (mean
std) std) std) std) std) std)
LC 131 9.88 30.23 45.85 83.18 10.15
0.2033 1.3742 3.1011 7.0487 8.3540 0.3867
LS 5.67 40.80 9471 160.46 294.00 42.06
00321 0.0985 0.2569 | 0.9856 2.0263 0.1046
PSP 2.07 10.76 31.43 38.31 57.91 10.95
0.5213 2.0112 3.8834 6.3464 114531 | 0.6677

In Table 24, the standard deviations are given for the same test set and for k=5. These
standard deviations have been calculated from 50 different runs using the same destinations
asthe datain Table 21. In this case, the individual execution times from every origin have
been recorded so that the standard deviations can be calculated.

Thefirst and most important conclusion from the previous analysisis that, in general,
the label correcting agorithm performs better than all the other implementations for medium
and small size networks. However, the partitioning shortest path agorithm is superior for
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larger networks. This can be attributed to the fact that the PSP algorithm performs less
efficient scanning of thelist structure than the L C algorithm for small networks.

Another observation is that the execution times for the PSP algorithm exhibit higher
variance than the others, as seen in Table 24. The label setting algorithm has the lowest
variance in all cases. This can be explained by the fact that the number of iterations for the
LS implementation is aimost constant and independent of the origin node (kN iterations),
and iterations do not differ greatly from each other, unlike the other two codes for which
the composition of the SE list is heavily dependent on the origin node.

Update Path Algorithm

The path processing component is by far the most computationally expensive part of
DYNASMART. This s the primary motive for studying alternative schemes that can
accurately compute paths faster. The scheme presented in this section was introduced in
Chapter 2. It consists of updating the already computed paths every simulation step (or
small number of steps),while the k-shortest path algorithm computes the paths “from
scratch” at specified intervals. This approach might miss a path that has become a k-best
path at some point between two consecutive computations of the paths; however, it is
unlikely to miss the best two or three paths. The trade-offs between updating versus
calculating paths are discussed in alater section. In this section, an efficient scheme to
update an existing k-shortest path tree with new travel timesis presented. Two aternative
update path schemes were investigated for this study. The first was based on alist update
design that can vectorize readily but includes many computationally redundant parts. The
second approach uses a compact tree update scheme that does not vectorize well because of
its highly sequential nature; however, it avoids redundant computations and ultimately
outperforms the first approach. The tree based approach is discussed in the next section.

This agorithm is based on arather straightforward tree traversal procedure that
sequentially updates the nodes with new labels moving in a depth-first fashion down the k-
shortest path tree. The tree traversal procedure does not actually matter as long as a node-
path is updated after its predecessor node-path has been updated. Thisis guaranteed by
assigning a serial number (PriorityNo) to each node-path so that if a node on path m of
node i points to node j and path 1, then PriorityNo(i,m)>PriorityNo(j,l). In order to
achieve this, a procedure was built (BuildPriorityTree()) to sequentially trace, for every
node-path, its path to the destination node or to an already traced node-path. The steps of
the BuildPriorityTree() procedure follow:
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BuildPriorityTree() Procedure

Sep |. Assign priority 1 for the first path (k=I) of the destination node.

Sep 2. For every node and path (i,m) in the network other than the first path of the
destination node run Step 3. If al the node-paths have been scanned, then go to Step 5.
Sep 3. Check if node-path (i,m) has aready been assigned a serial number. If assigned,
then go to step 4 and move to the next node-path; otherwise, trace the next node-path (j,1)
that follows this node-path aong its path to the destination node, save (i,m) in sequential
array PriorityPointer(), name (j,l) current node-path and go to Step 3.

Sep 4. If the PriorityPointer() array is empty go to Step 3; otherwise sequentially assign to
every node-path in the PriorityPointer() a serial number increasing from the last entry to the
firstand go to Step 2.

Sep 5. Terminate.

When the procedure terminates, a unique serial number has been assigned to every node-
path.

The node-paths are updated iteratively starting from the one with priority number two
up to the node-path with priority number NK. The BuildPriorityTree() procedure
guarantees that when the label for the node-path (i,m) is computed by adding to the label of
its predecessor node-path (j,I) the new travel time of arc (i,j), the label of (j,I) has been
updated. The final step of the update path agorithm is a sorting subroutine that sorts the
updated path in increasing order of label size. Next the overall update path algorithm is

summarized.

Update Path Algorithm
Sep 1. Call the procedure BuildPriority Treg()
Sep 2. For Priority Number ip=2 to Nk, repeat the following operation:
Set the label of the node-path with priority number ip equal to the sum of the label of the
predecessor node-path and the new travel time of the arc that connects the two labels.
Sep 3. For every node sort the labels of the paths.
Sep 4. Terminatethealgorithm.
Implementation of the algorithm is straightforward. The computational performance of
the proposed update path algorithm is reported for different size random networks and the

core street network of Austin, TX (625N, 1742A) in Table 25.
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Table 25. Computational Results in CPU Milliseconds for k=10

The results in Table 25 demonstrate the considerably lower computational
requirements of the update path scheme compared to dl the k-shortest path algorithms. The
update approach performs better for larger networks because the effect of aninitial start-up
cost is reduced for larger networks. Designs that combine update and calculate algorithms
are investigated in this chapter’s last section.

Parallel Design of Path Processing Algorithms

Application of parallel programming concepts to large network problems has attracted
considerable attention (Mahmassani, 1990; Zenios,1991) mainly because of its potentia to
improve computational timesfor large problems. In this section, an assessment of the
capabilities of parallel computers to speed-up path processing computations is made and
different possible aternative designs are evaluated. A brief description of relevant paralel
programming conceptsisincluded first.

Some Concepts of Parallel Programming
The schemes examined here are designed with a multiple instructions multiple data

(MIMD) machine in mind. CRAY Y-MP/8 belong to this category, with 8 CPU’s and
shared memory communication environment (CRAY, 1989). A number of parale
processing capabilities are available on this machine such as macrotasking, microtasking,
autotasking, vectorization, and 1/0 subsystem parallelization.

Only macrotasking is studied in this application because it is a feature commonly
available on every paralel machine. Vectorized designs are discussed in Chapter 7 in
conjunction with the implementation of the time-dependent shortest path algorithm.
Macrotasking is a form of multitasking that uses multiple processors in a FORTRAN
program at the subroutine level. The whole operation is controlled by the programmer who
is responsible to explicitly partition the program into tasks, each of which is eligible to run
on aCPU. Typicaly, these tasks may take the form of different subroutines that can be

161



executed concurrently, or they can involve separate invocations of the same subroutine. A
task is a piece of code and data that can be scheduled for execution on a CPU.

The basic problem that arisesin parallel programming is computational and storage
dependence among the tasks. Computational dependence includes data dependence and
control dependence. Data dependence is an ordering relationship between statements that
use or produce the same data, while control dependence refersto the situation in which the
order of execution of statements cannot be determined a priori. This happens when
conditional statements (IF commands) are encountered in the program. Finally, storage
dependence has to do with the independence of the workspace. Each parallel computational
task has access to variables, and the fetching and storing of al the variablesin one task
must not interfere with that in another task

Parallel k-Shortest Path and Update Path Algorithm

Parallelism was exploited in this study at two levels: tree rooted at single destination
(or origin), and multiple destinations (origins). At the single destination level, the
algorithm is executed jointly on several CPU’s; at the multiple destination level, each
destination root node is assigned to one processor that executes independently a copy of the
algorithm. The first approach did not perform satisfactorily, primarily because of the
characteristics of the CRAY Y-MP/8 which entail considerable overhead for several
processors to collaborate on finding the shortest path tree for a single root node. Some
design details are briefly discussed. The second design performed extremely well. Its
design and implementation details are discussed in this section and some computational
resultsare given.

Initially, the network structure and the travel time dataare read sequentially by asingle
processor and stored in the common memory. Next the variables and parameters are
initialized by a single processor, although they could be initialized in parallel, because this
step takes only avery small portion of the total computation time. A copy of the path
computation iterative procedure is called once by each processor and runs completely
independently. Every copy maintains its own SE list and k-shortest tree which are stored
in the private memory space of each processor. The only time the shared memory is
accessed is when travel time data is needed. In theory, this step does not interfere with the
other processors because the data are accessed in read-only fashion. However, in practice,
this can create memory contention, especialy if more than one processor istrying to access
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the same piece of data simultaneously. The steps of the above scheme are described next.
Two library functions of CRAY are employed to implement this approach:

TskStart(): assigns a subroutine S to a processor P,

TskWait(): waits for a processor P to become idle.

Parallel k-Shortest Path Algorithm for Multiple Destinations

Sep I.  Read network structure and travel time data and initialize the parameters and
variables.

Sep 2. Do Step 3for ip=I to NumberOfProcessors- 1.

Sep 3. Let Dedtination(ip) to be the current destination;

Call TskStart to assign the k-shortest path subroutine to processor ip.

Sep 4. Cdl TskStart to assign the k-shortest path subroutine to processor

Num berOfP rocessors.
Sep 5. Call TskWait and wait for all NumberOfProcessors processors; Terminate.

The k-shortest path subroutine has the same structure as the sequential scheme described in
aprevious section. An identical design is used for the update path algorithm. The only
difference is that the update path procedure is called instead of the k-shortest path
procedure.

The above scheme was coded and tested on street-like networks of varying sizes. The
results were extremely stable and insensitive to the size of the network for the networks of
Table 22. Four processors were utilized in a dedicated environment yielding speed-up of
approximately 3.6 in ailmost every test. Table 26 shows the expected speed-up of a similar
architecture with varying number of processors according to Amdahl’s Law (CRAY,

1989).
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Table 26. Theoretical Speedup for the Parallel k-Shortest Path Algorithm

Processors | 1 4 8 16 64 Infinity
Speedup 1 3.6 6.5 10.5 19 27

In contrast to the proposed design, parallelization at the level of the individual
agorithm (for asingle destination root node) did not perform well. The parallelization was
applied on the deque operations. Specifically, each processor reaches the deque and deletes
the first node of the deque. Next, it scans the deleted node by reaching its neighbor nodes.
If the labels of any of the reached nodes is improved, then these nodes are inserted in the
deque. In order for this scheme to work, however, the deque must be protected from
simultaneous access by two or more processors that could destroy its structure and result in
wrong results.  Protecting the deque turns out to be very expensive computationally
because it is activated and de-activated every single scanning iteration, thereby incurring
significant overhead. Nevertheless, had the library of parallel functions of CRAY been
cheaper, this scheme would perform fairly. Moreover, it must be noted that in the above
scheme we did not consider intersection movements and time-dependency. If these factors
are considered the size of the task (grain) is expected to increase so that parallelization at the
level of a single destination would be expected to perform satisfactorily.

MULTIPLE USER CLASSES
K-Shortest Path Algorithm : Analysis and Implementation.

Two dternative schemes are considered for computing paths on networks with
multiple user classes. The first approach is a smple extension of the single user class
design. It successively computes the paths using multiple realizations of the network (one
for each user class) with different arc costs (for the corresponding class) for every
realization. The computational complexity and memory requirements of thisscheme are
direct multiples of those for asingle user class. This design was challenged by another
more advanced scheme that is more efficient in terms or memory and computational time.
This scheme combines the k-shortest path and the update path algorithms presented in an
earlier section in an intelligent way to create upper bounds for one user class using the
paths computed for the previous class. Moreover, computing k paths for every user class
will result in mk total pathsfor every node. Most of these paths are expected to be the
same or overlap to a great extent, i.e., the mth best path for one user could be the 1th best
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path for another user for the same origin-destination pair. This redundancy is avoided in
the design proposed in this section. In order to avoid the computation and storage of
redundant paths we combined a cal cul ate/update scheme that isfirst described in words and
then outlined formally in agorithmic steps.

Using the k-shortest path algorithm presented in the previous section (for asingle user
class), we compute kinitial paths for the first user class without using upper bounds. Next
we use the Update PathO algorithm presented previously and update the stored paths for
the first class using the arc costs of the second user class. These paths are upper bounds to
the actual shortest paths for the second user class; by using them in computing the shortest
paths for the second user class, the computation time can be dramatically improved. The
improvement results not only from the paths of the previous user class being sharp upper
bounds, but also because some of the paths actually do not change at al. They may have a
different rank for the new user class but they are physicaly the same. |f a path remains the
same, then its shortest path label equals the upper bound computed in the Update Path
subroutine and can therefore be easily detected. Suppose k2 paths are needed for the
second user class, and ki for the first user class. The ki least paths from the kinitial paths
that we have computed are marked as permanent and will not be deleted from the structure
even if they are not among the k2 paths for the second user. If any of these paths happen
to be among the k2 paths for the second user class, then they are marked as such. If the
non-similar paths are greater than (kinitial-kl) then we augment the path structure. The
above reasoning applies to the remaining user classes and is summarized in the following

agorithm:

K-Shortest Path Agorithm for Multiple User Classes

Sep 1. Compute kinitial pathsfor thefirst user class using the k-shortest path algorithm
for asingle user class.

Sep 2. Repeat Steps 3 to 5 for CurrentUser=2 to Number of Users.

Sep 3. Cal the Update Path algorithm using as new costs the arc costs for the

CurrentUser class.
Sep 4. Compute kCurrentUser paths using the k-shortest path algorithm with upper

bounds, stated next.
Sep 5. Call the BuildPriorityTree procedure.
Sep 6.  Update the common k-path structure for every user class and destination.

Sep 7. Terminate
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Label Correcting K-Shortest Path Algorithm with Upper Bounds

Step 1. [Initialize the labels of all the nodes in the network with an initial upper bound.
That is, assign a k-vector ).j=(lj1,kj2,...,7\.jk) to every node j, where the components of
the vector lj are listed in increasing order. These values are upper bounds to the shortest

values and are computed in the Update Path Algorithm.

Step 2. Create a list that will contain all the nodes that are ‘eligible to be scanned’, (SE)
list, and insert node 1 in it. A node is ‘eligible to be scanned' if it has the potential to
reduce at least one of the labels of its adjacent nodes.

Step 3. If all the nodes have been scanned at least once and the SE list is empty, then go
to Step 6; otherwise go to Step 4.

Step 4. Select the top node from the SE list. If there are no other unscanned components
of the k-vector label of this node, delete the node from the SE list and scan it. If there is an
unscanned label associated with this node, leave the node in the SE list. Let i denote the
chosen node, and j any node reachable from i. The scanning procedure can be summarized
again as follows:

If Am+Cjj< ﬁgk then replace AJJ‘ with Aj"+Cjj, and

insert node j in the SE list (if it is not already there). Otherwise do nothing.

This procedure is repeated for every m=1,....k and for every je I'(i). If the SE list is
empty, go to Step 3.

Step 5. Repeat Step 3.

Step 6. Terminate the procedure. The k-vector label 7Lj for every node i, contains the k-

shortest labels from the origin node to node i.

When the overall algorithm terminates, there is a single structure with K paths that
contain at least k1 best paths from the first user, k2 best paths of the second user and so

on. However, because the paths do not differ significantly for the different user classes,
no of users

the total number of stored paths K is significantly less than z k'. Moreover, some of
i=1

the K-ki paths for the ith user class are among (or are very close in length to) the K best
paths of this user class. Note that the proposed algorithm computes the paths for multiple
user classes but only for one destination node (from all origins).
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The implementation of the k-shortest path algorithm for multiple user classes does not
differ conceptually from the ordinary algorithm. The individual pieces of the algorithm
follow the same guidelines described previoudly.

Update Path Algorithm for Multiple User Classes

The update path algorithm for the multiple user classes case is exactly the same as that
for asingle class. Moreover, it is used internally by the k-shortest path algorithm for
multiple user classes as explained in the previous section. In addition, it is used to update
the k-shortest paths every simulation step of DYNASMART in the same way asin the
single user case. The only difference is that more paths are typically updated (K-paths) in
the multiple class case than in the single class case.

UPDATE/CALCULATE COMBINATION APPROACHES

In this section, we evaluate the strategy of combining calculate and update approaches
to speed up the path processing computations in DY NASMART. The objective is to
gpecify the “optimum” number of timeintervals that the paths are updated between two
successive computations. In Table 27, the average computation time for one run for the k-
shortest path (label correcting) and update algorithms are given together for comparison. In
Figure 52 the computational times are sketched for various scenarios with increasing
number of update timeintervals, i.e. less frequent computations.

Table 27. Computational Results in CPU Milliseconds for k=10 for

Calculate and UEdate Algorithms

100N 500N 1000N 1500N | 2500N | 625N
250 A 1250 A | 2550 A | 4500A | 7500 A 1742 A

Calculate | 3.66 25.13 84.60 120.78 22431 23.82
Lipdate 198 789 238 1 34 42 6317 703
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Update vs Calculate Scenarios
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Figure 52. Computation Time for Increasing Number of Simulation Steps
Between Two Successive Calculations

It is clear from Figure 52 that beyond 15 update steps the benefit of combining update
and calculate schemes is leveling off. This justifies the fact that 20 simulation steps are
interposed between any two consecutive computations currently used in DYNASMART.
Another design that should be further investigated is the use of variable number of
interposed simulation steps. When the conditions on the network are fairly stable (off-peak
period) many steps are interposed, while as conditions become more variable and dynamic
(during the peak period) the number of steps is decreased.
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CHAPTER 7
MINIMUM PATH ALGORITHMS FOR NETWORKS WITH
TIME-DEPENDENT ARC COSTS

In this chapter, we introduce two new minimum path algorithms for networks with
time-dependent arc costs: a least-time path and a least-cost path agorithm. The least-time
path algorithm calculates the minimum travel time paths on time-dependent networks with
arbitrary travel time functions. The least cost-path algorithm is a general approach that can
calculate minimum travel cost paths on networks where the travel cost is not the travel time
itself. Unlike other approaches, these algorithms are not restricted only to networks with
first-in-first-out links. They are based on the general Bellman's principle of optimality.
They discretize the horizon of interest into small time intervals and by starting from the
destination node they cal cul ate the minimum paths operating backwards. The least-time
path algorithm is used by the algorithm described in chapter 4 to compute a time-dependent
user equilibrium traffic assignment in a network, while the least cost path is used by the
system optimal time-dependent algorithm. Both algorithms are incorporated in the multiple
user class assignment procedure.

This chapter is organized as follows: in the first section, a brief background review is
presented. In the second section, the least-time path agorithm is analyzed. In the third
section, the least-cost path algorithm is presented. Finaly, in the last section an efficient
implementation scheme for the least-time path algorithm is presented in detail and
computational results are reported.

INTRODUCTION AND LITERATURE REVIEW
Introduction and Research Objectives

This study introduces two new algorithms: a time-dependent |east-time path (LTP) and
a time-dependent least-cost path (LCP) agorithm. The LTP algorithm computes the least-
time paths on networks with time-dependent travel times on the arcs, while the LCP
agorithm computes optimum paths on time-dependent networks where the travel cost isnot
the travel time itself. The LTP algorithm is required in the time-dependent UE assignment
solution procedure, the LCP agorithm is used in the SO assignment algorithm. In the
latter, the arc costs consist of the marginal travel times, and the least marginal travel time
path is sought.

Both algorithms use discrete travel time and travel cost functions over atime period of
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interest (e.g. peak period) discretized into very small timeintervals, A vector of labels, one
for each time interval, is maintained for every node and is updated in alabel correcting
fashion. The scan eligible (SE) list can have any structure applicable to the static label

correcting shortest path case. In this study, the agorithms are shown to have polynomial

computational complexity, if the SE list has a smple queue structure; however, best
performance has been obtained with a double ended queue structure for the SE list. Both
algorithms proceed backwards, starting from the destination node, as they calculate the
optimum paths from all nodes and for every discrete time interval to the destination node.
An implementation scheme is presented for the new agorithms, to efficiently calculate
paths for large street networks on commercially available computers. Both algorithms have
been implemented and coded on a CRAY Y-MB/8 supercomputer, and tested on real street
aswell as large random networks. This scheme performs extremely well, much better than
the theoretically computed upper bound, because it takes advantage of the fact that although
the travel times or costs may change every discrete time interval, the best paths do not
necessarily change as frequently. In fact, only few paths become best paths for a given
origin-destination pair, even for long time periods and highly dynamic networks.

Literature Review

Thefirst paper dealing with the time-dependent shortest path algorithms appearsto be
by Cooke and Hasley (1966). They developed an iterative function, which is an extension
of Bellman’s principle of optimality (Bellman, 1957), that gives the time-dependent
shortest paths from every node in the network to one destination node, for a set of discrete
departure time steps. The travel times on the arcs are defined in positive integer time units,
for every time step of the discrete scale SM =(to, to+l, to+2, . . ..to+M) The integer

number M is chosen so that the travel times are defined for any t E Sv. Thetravel times
for t > to+M are assumed to be infinite. This assumption eliminates all paths with arrival
time to a destination node beyond to+M, leading possibly to undetermined paths for some
nodes and time steps. This agorithm has theoretical computational complexity O(|N|3M),
where |N| is the number of nodes in the network. However, no implementation scheme for
this approach has been reported and hence no computational results are available to
determine its actual performance.

Dreyfus (1969) proposed a label setting approach that generalizes Dijkstra’s static
shortest path algorithm (Dijkstra, 1959). This approach calculates the time-dependent
shortest path between two nodes for one departure time step with the same computational
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effort as for the static case (O(|N|2)). However, if the paths from all the nodes to a
destination node are sought, and for every time step, this approach has the same complexity
as Cooke and Hadey’ s algorithm.

Animplicit assumption in Dreyfus approach is that the FIFO (first-in-first-out)
property holds on the network links. If this assumption does not hold, then Dreyfus
agorithm fails to detect the shortest paths. This has been stated in one form or another by
severa authors, including Halpem (1974), Malandraki (1989), Orda and Rom (1990), and
Kaufman and Smith (1993). Orda and Rom (1990), recently, proposed an approach that is
not restricted to FIFO links only. This approach can identify optimum waiting times on the
visited nodes when such waiting is allowed, or the optimum waiting time at the source
node if waiting is not allowed anywhere else. However, their approach fails to find
efficiently the best path if waiting is not allowed everywhere along the path. It must be
noted also that Orda and Rom’ s approach does not apply to networks where the cost on the
linksisnot the travel timeitself, but another time-dependent arbitrary cost function (such as
the margind travel time encountered in the SO time-dependent assignment algorithm).

LEAST-TIME PATH TIME-DEPENDENT ALGORITHM
Formulation of the Problem

Let G=(N,A) be afinite directed graph with|A| directed arcs connecting the nodes. L et
dij(t) be the non-negative time required to travel from nodei to node j when departure time
from nodei ist; dij(t) isarea-valued function defined for every t E Sin such away that
t+dij(t)E S, where S{ 10, t0+6, t0+26, . . . t0+MG}, t0 is the earliest possible departure
time from any origin node in the network, 6 isasmall time interval during which some
perceptible change in traffic conditions may occur, and M is a large integer number such
that, the interval from t0 to t0+M6 isthe time period of interest (or planning horizon).

We assume that dij(t) for t>t0+M6 is constant and equal to dij(t0+M6). Thisisa
reasonable assumption for urban transportation networks where after the peak period,
somewhat stable travel times can be assumed. Nevertheless, it is not a restrictive
assumption since M is user defined and can always be increased to include time periods
with variable travel times on some arcs. We denote by node D the destination node of
interest in the network. The algorithm proposed in this section calculates the time-
dependent least-cost paths from every nodei in the network and at every time step t to the

destination nodeD.
At each step of the computation, denote by hi(t) the total travel time of the current
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least-time path from node i to node D at time t. Let A = [Aj(tg), Aj(tg+5),..., Aj(tg+Md)]
be an M-vector label that contains all the labels A;(t) for every time step t € S for node i.
Every finite label A{(t) from node i to node D is identified by the ordered set of nodes
Pj={i=ny, ny, ....ny=D }.

According to Cooke and Hasley, A(t) is defined by the following functional equation:

A (1) = { T {d;®+2,(t+dy(t)} forie NID; te S
' 0 fori = D;teS

A modified version of this equation is the building block of our approach. Instead of
scanning all the nodes at every iteration, a list of scan eligible nodes is maintained,
containing the nodes with some potential to improve the labels of at least one other node.
The proposed algorithm operates in a label correcting fashion; therefore, the label vectors
are upper bounds to the least-time paths until the algorithm terminates.

The LTP Algorithm

Initially, the SE list contains only the destination node D. The labels of node D are set
equal to zero and the labels of the remaining nodes to infinity. In the first iteration, all
nodes that can directly reach D are updated according to equation (2), and inserted in the SE

list.
A =dip(® + Ap(t+d;p®) i e I1{D}

where ™1 {D} is the set of nodes that can directly reach D.
Next, the first node i of the SE list is scanned according to the following equation :

Aj(t) = min {30, dji(®) + Ai(t+dj())  j e T1{i)

for every time step t € S. If at least one of the components of Ajis modified, node j is

inserted in the SE list. This scheme is repeated until the SE list is empty, and the algorithm
terminates. Relations (2) and (3) are modifications of equation (1) which in turn is an

extension of Bellman's principle of optimality.
The steps of the LTP algorithm are as follows:

Step 1. Create the SE list and initialize it by inserting into it the destination node D.
Initialize the label vectors at the following values:
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Ap=(@0, 0, ..., 0)
Aj=(00,00,...,02) fori € N\D.
Step 2. Select the first node i from the SE list, name it "Current Node" and delete it from
the list. If the SE list is empty, go to step 4.
Scan the current node i according to relation (3), by examining each node j, j € I'"1(i}.
Specifically, for every time step t € S do the following :
Check if 7«.j(t) is greater than dji(t)+7«,i(t+dji(t)). If it is, replace Zj(t) in the label vector
A; at position t with the new value.
If at least one of the M labels of node j has been improved, insert node j in the SE list. The
details of the structure of the SE list, and the associated operations of creation, insertion,
and deletion are discussed in the last section.
Step 3. Repeat step 2.
Step 4. Terminate the algorithm. The M-dimensional vectors A; for every node i in the
network contain the travel times of the time-dependent least-time paths from every node i to
the destination node D for each time step t € S.

Next we state without proving the following Theorem:

Theorem 1. Upon termination of the algorithm, every element of the vector label is either
an infinite number, meaning that no path exists from this node to the destination node at the
corresponding time step, or a finite number that represents the shortest path from this node
and time step to the destination node.

The proof of Theorem 1 can be found in Ziliaskopoulos and Mahmassani (1992).

The structure of the SE list affects the computational complexity of the algorithm. The
complexity of the LTP algorithm is OMZ2INI3), if a simple queue is used as a structure for
the SE list. This structure actually performs worse than several other designs, but is
convenient for establishing a theoretical upper bound on the performance of the LTP

Networks with Non-FIFO Link Travel Times

The proposed LTP algorithm was documented without assuming FIFO (first-in-first-
out) links and is therefore not restricted to such networks. It produces uninterrupted paths
that reach the destination node in the least possible time, without any waiting at any node.
However, if waiting on some or all nodes were allowed for a limited or unlimited time, the
LTP algorithm could easily be modified to calculate the least-time paths considering waiting
on the nodes, too.
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Networks with non-FIFO links may arise in modelling cases where the kinds of non
linear travel time functions properly or improperly used by traffic modellers to relate
average link trip time to the prevailing flow or density on a link may not necessarily
generate trip times that satisfy the FIFO assumption (as exemplified in Smeed, 1967).
Moreover, they arise in urban street networks with multimodal transportation opportunities,
where the fastest "park and ride” or "transfer" option is sought, in which case waiting at a
node may be meaningful since some waiting in the transfer or parking areas may be possible.

An example of a network with a non-FIFO link is shown in Figure 53, which is
borrowed from Orda and Rom (1990). The continuous function of travel time 1+(5-t)2 for
arc (3,4) was discretized as shown in Figure 53. The paths and the pointers to the
subsequent nodes and time intervals are shown as vectors of labels on the nodes. So the
first label of node 2, [0 8 3,2] means that the best path from node 2 to node 4 at time 0
points to node 3, at time interval 2.

ols |32

117 {33

214 {34

3|3 |35

4|4 |36

517 137

6]12] 338

7]19] 39

8l19]3,10
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Figure 53. A Network Example with a Non-FIFO Link
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The fastest path from node 1 to node 4 for departure time t=0 is P1={1,3,2,3,4}. This
path contains a loop. In general, if the FIFO property does not hold for all the links of a
network, some best paths may contain loops.

The FP algorithm efficiently solves this problem by discretizing the travel times.
Bellman's principle of optimality is valid because the algorithm implicitly expands the
network for every discrete time interval. Therefore, the subsolutions for every optimum
solution are optimum, too; the best path to node 3 at time interval t=1 is {3,2,3,4}. Note
here that the same example with continuous travel time function was identified as NP-
complete by Rom and Orda (1990).

Another case for which the FIFO assumption does not hold in transportation networks
is where the travel cost is not the travel time itself, but another arbitrary cost function of
time. In this case, the links are traversed in a time according to a travel time function, but
the cost incurred is given by some arbitrary function. This type of least cost path is
essential in certain traffic modelling problems, especially in solving the time-dependent
system optimal assignment problem described in Chapter 4. In the next section, a
modification of the LTP algorithm is presented for such problems.

THE TIME-DEPENDENT LEAST COST PATH ALGORITHM

Problem Formulation

On the graph defined in the LTP algorithm formulation in the previous section define
cij(t) to be a real-valued cost function of time associated with arc (i,j). The cij(t) is defined

for every t € S and denotes the cost to traverse the arc (i,j). An example of such a cost in
the dynamic traffic assignment problem the time-dependent marginal travel time, imposed
on the whole system by an additional user on arc (i,j) at time t. Other examples of such
travel costs are toll fees, fuel consumption, and pollutant emissions. We assume that cj;(t)
is a non-negative number, although negative values that do not create negative cycles would
be acceptable.

The LCP algorithm presented in this section calculates the time-dependent least-cost
paths from every node i in the network and at every time interval t to the destination node
D. At each step of the computation, let A;(t) be the total travel time and nj(t) be the total
travel cost of the current least-cost path from node i to node D at time t. Let Aj = [A(tg),
Ai(tg+0),..., Aj(tg+MJ)] and H;j = [n;(tp), Ni(to+9)s..., Nj(tp+M3)] be the M label vectors
that contain all the labels Aj(t) and n;(t), respectively for every time step t € S for node i.
Every finite label nj(t) corresponds to a path from node i to node D, which is identified by
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the ordered set of nodes Pj={ i=ny, n3, ....njy=D J.
A;(t) and n;(t) are defined according to the following functional equation:

Mj(®) = min (M), cji() + Nit+dji®)}  je (i)

and
dji(t) + Aj(t+dji(®))  if (0 < Gji() + Mi(t+di(t))

Aj(t) = je i)
}.j(t) otherwise

The LCP algorithm is based on Equation (9). It operates in a label correcting fashion
maintaining a SE list of nodes with some potential to improve the labels of at least one other
node in a way similar to the LTP algorithm.

The Algorithm

Initially the SE list contains only the destination node D. The H- and A— label vectors
of node D are set equal to zero, and for the rest of the nodes to infinity. In the first iteration
all the nodes that can directly reach D are updated according to Equation 10, and inserted in
the SE list.

Ni(® =cip® +Mpt+d;p®)  ie I"1{D)

and

() =dip® + Ap(t+din())  ie I"1(D)

where I'-1{D)} is the set of nodes that can directly reach D. Next, the first node i of the SE
list is scanned according to Equation 9 for every time step t € S. If at least one of the
components of Hj is modified, node j is inserted in the SE list. This scheme is repeated
until the SE is empty, and the algorithm terminates.

The steps of the LCP algorithm are summarized as follows:
Step 1. Create the SE list and initialize it by inserting into it the destination node D.
Initialize the label vectors at the following values:

Ap=(0, 0, ..., 0),

Hp=(0, O, ..., 0),

Aj=(o0, 00 ..., eo)and

Hj=(e0, 00 ,...,o0) forie V\D.
Step 2. Select the first node i from the SE list, name it "Current Node" and delete it from
the list. If the SE list is empty, go to step 4.
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Scan the current node i according to Equation 9, by examining each node j, j € r-1{i}.
Specifically, for every time step t S do the following :
Check if 1;j(t) is greater than cj;()+n;(t+d;i(1). If it is, replace nj(t) in the label vector
Hj at position t by Cji(t)+ni(t+dji(t)), and hj(t) in the label vector Aj at position t by
dji(O)+A;(t+dji(0).
If at least one of the M H-labels of node j has been improved, insert node j in the SE list.
The structure of the SE list and the associated operations of creation, insertion, and deletion
are similar to those for the LTP algorithm.
Step 3. Repeat step 2.
Step 4. Terminate the algorithm. The M-dimensional vectors Hj and Aj for every node i in
the network contain the travel cost and travel time of the time-dependent least-cost paths
from every node i to the destination node D for each time step t € S.

IMPLEMENTATION AND COMPUTATIONAL EXPERIENCE
Implementation of the LTP Algorithm.

The implementation of this algorithm is similar to the implementation of a static label
correcting algorithm. The three principal implementation issues are: the network
representation, the data structure of the SE list, and the path storage.

The network representation is more complicated than in the static case, because travel
times need to be specified for every time step (M steps) for every arc. The most efficient
way to store the network is the "backward star” structure, since at step 2 of the algorithm
we need all the arcs that end at a specific node. The forward and backward star structures
were described in the previous chapter. To handle the time-dependent trip times, we use
the second dimension of the backward star to store pointers to an IAIxM matrix, where |Al is
the number of arcs of the network. The required memory to store this structure is the
minimum possible, INI+AlI(M+2) units.

The structure of the SE list for the label correcting algorithms has been extensively
studied in the literature. Any SE list structure is appropriate for the proposed algorithm: a
simple list with any priority rule, a queue, a double ended queue, as well as Glover et al.'s
(1985) partitioning shortest path scheme with two SE lists. In this application, a double
ended queue (deque) structure has been implemented. The deque structure allows the
insertion of nodes at both ends of the SE list according to a predetermined strategy, and
removal from the beginning of the SE list. The deque is implemented along the same lines
described in the previous chapter for the k-shortest path algorithm. The Creation,
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Insertion, and Deletion operations are defined in the same way as well.

The paths are maintained in an Mx2-dimensional array of pointers for each node.
These pointers point to the successor node and its label address. This arrangement requires
2IN|]M memory locations, the least possible.

In pseudo-code form the algorithm is summarized below:

Program Time Dependent Shortest Path
Call Creation
Call Insertion(N)
Do 1, While (SE list is not Empty)
Call Deletion(CurrentNode)
Do 2, For (All nodes J that can directly reach CurrentNode)
NextNode =]
InsertInSEList.=FALSE
Do 3, For (t=1,M)
CurrentTravel Time=Travel Time(NextNode, CurrentNode,t)
NewLabel=LABEL(CurrentNode,t+CurrentTravelTime)+CurrentTravel Time
If (LABEL(NextNode,t) <NewLabel) Then
LABEL(NextNode,t)=NewLabel
InsertInSEList=TRUE
PathPointer(NextNode,t,1)=NodeCurrent
PathPointer(NextNode,t,2)=t+CurrentTravel Time
EndIf
3 Continue
If (InsertInSEList) Call Insetion(NextNode)
2 Continue

1 Continue

Procedure Creation
Do, For (Node=1, V- 1) Deque(Node)=0
Deque(N)=999999
FIRST=N
LAST=N

Procedure Deletion(CurrentNode)
CurrentNode=FIRST
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FIRST=Deque(CurrentNode)
Deque(CurrentNode)=-1

Procedure Insertion(Node)
If (Deque(Node)=0) Then
Deque(LAST)=Node
LAST=Node
Deque(Node)=999999
Else
If (Deque(Node)=- 1) Then
Deque(Node)=FIRST
FIRST=Node
End If
EndIf

Where:

LABEL(Nodet) isavariable that holds the M-vector |abels for every node.

PathPointer(Nodet,1) is a pointer that points to previous node while
PathPointer(Node,t,2) points to the corresponding time of arrival at the previous node of
the shortest path from this node to the destination node N.

InsertinSEList is alogical variable which is used to determine if alabel of a node was
changed.

NewLabel is an auxiliary variable that temporarily holds the new label of the next
node.

Note that all the variables are typed with lower size letters.

The most time consuming part of the algorithm is Step 2 (see Algorithm description),
where each element of the M-vector is updated for every node adjacent to the scanned node.
This Step corresponds to loop 2 in the pseudo-code, and requires 4Md computationa time
units, where d is the indegree of the scanned node (number of iterations of loop 2). The
inner loop 3 can be efficiently vectorized because of the absence of inter-dependencies, and
the number of iterations M is usualy greater than 64 (the number of registersin the
CRAY’svector processor) which leads to maximum vectorization speed-up.

The efficiency of the algorithm, however, depends essentially on the total number of
scanned nodes before the process terminates. The lower bound on this number is the total
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number of nodes in the network (|N[), while an upper bound is [N|2M. The upper bound is
obtained by direct extension of the results for the corresponding static label correcting case.
As shown in the next section, this upper bound is not a tight bound in practical
applications. The complexity of the algorithm is that of Step 2 (loop 2) multiplied by the
upper bound on the number of repetitions of this Step (iteration number of loop 1), or
O(|N|3M2) in the general case that the maximum indegree of anodeis |NJ-1.

This implementation was coded in the FORTRAN CFI77 language, and run on a
CRAY Y-MP/8 supercomputer. The results from the tests are presented in the next section.

Computational Experiments

Four different sets of networks are used to test this new algorithm. Set 1 consists of
five random networks with structure similar to street networks and with the number of
nodes ranging from 100 to 2500. The number of time stepsis held constant at 240. The
travel timesfor each time step are generated in such away that the FIFO criterion holds for
every link. Specifically, arandomly generated number is accepted astravel timefor agiven
time step only if the absolute value of its difference with the travel time of the previoustime
step does not exceed the length of the time interval between the two steps. Set 1 was
designed to test the relation of the performance of the algorithm to the network size.

Set 2 contains five different representations of the same random network consisting of
1000 nodes, 2500 arcs and varying numbers of time steps that range from 120 to 640. In
set 3, the number of arcs ranges from 1000 to 11500, while both the number of nodes and
the number of time steps are kept constant at 1000 and 240, respectively. This set is used
to estimate the relationship between the execution time and the average degree of anodein a
network.

Finally, set 4 consists of one real street network, that of the core area of Austin, TX,
consisting of 625 nodes and 1742 arcs. Time-dependent travel times for this network were
produced from DY NASMART for a simulated peak period of 50.3 minutes. This peak
period is discretized into 503 time intervals of 0.1 minute each, and the travel time for each
timeinterval isgenerated.

Tables 28 to 31 present the computation times in CPU milliseconds for each set. All
runs were performed on a CRAY Y-MP/8 supercomputer, using the CFT77 FORTRAN
compiler. This computer has eight CPU’ s with vector pipeline architecture. The algorithm
is coded in such away as to allow vectorization when applicable. Vectorization is
especially well suited for Step 2 of the algorithm, in which M iterations are performed,
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since no dependency exists between any two iterations and the number M is usually larger
than the number that CRAY considers the minimum number of iterations for maximum
speed-up. However, no attempt was made to exploit other hardware characteristics of the
CRAY beyond vectorization. In addition, in order to smooth out the effect of the
destination node choice on the execution time, thirty runs were performed for thirty
different destinations for every network, and the average computation time is reported. It
must be stressed, however, that the algorithm is not machine dependent. It can be applied
on any computer, although it will perform better on a vector processor architecture.

Tables 28 and 29 contain the results for network sets 1 and 2; these results indicate that
the computation time increases amost linearly with the number of nodes and the number of
time steps in the network.

The results of Table 30, on the other hand, suggest a nonlinear relation between the
execution time and the average degree of anode in the network. An exponential model was
calibrated from these data using regression, yielding the following relationship:

Computation Time=22.13 dl .4
where d isthe average indegree of a node in the network.

Table 31 contains the averages and standard deviations of the computation time and the
total number of scanned nodes for the real street network of the Austin, TX core area.

Table 28. Computation Times in Milliseconds, for Different Network Sizes

100 Nodes 500 Nodes 1000 Nodes 1500 Nodes 2500 Nodes
250 Arcs 1250 Arcs 2500 Arcs 5000 Arcs 8000 Arcs
240 Time Int. 240 Timelnt. | 240 TimeInt. | 240 Timelnt. 240 Time Int.

5.97 35.73 73.28 141.42 235.04

Table 29. Computation Time in Milliseconds, for Different Number of
Time Steps Varies

1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes
2500 Arcs 2500 Arcs 2500 Arcs 2500 Arcs 2500 Arcs
120 Time Int. | 240 Timelnt. | 360 Time Int. 480 TimeInt. 640 Time Int.
37.95 73.28 102.46 131.56 158.54
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Table 30. Computation Time in Milliseconds, for a Network with 1000
Nodes, 240 Time Steps, and Varying Number of Arcs

1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes
2000 Arcs 3000 Arcs 6000 Arcs 9000 Arcs 11500 Arcs
240 Time Int. 240 Time Int. 240 Time Int. 240 Time Int. 240 Time Int.
55.89 91.88 253.95 448.19 624.86

Table 31. Performance of the Algorithm on the Real Street Network

Computation time in Total number of scanned
milliseconds nodes
Mean 107.41 736
St. Deviation 11.82 81

The total number of scanned nodes is the main factor that affects the performance of the
agorithm. The lower bound for this number is the number of nodesin the network, |N|,
while an upper bound was found to be|N|2 M in a previous section. Theresultsin Table
31 show that for the tested network of 625 nodes, the total number of scannings was 736,
or 1.18|N| which is considerably less than the theoretical upper bound. Moreover, from the
low values of the standard deviations, it can be inferred that the algorithm is reasonably
stable.

Combining the above results, we can conclude that as is common with shortest path

problems, the actual computational performance for the networks considered hereis on the
order of INIMdI.4, which is far from the worst case theoretical complexity O(|N|3M2).
In addition, as mentioned previously, the algorithm vectorized efficiently. The agorithm
was tested on the Austin core street network with the vectorization feature disabled for the
same destination nodes as above, and the average execution time was found to be 728.02
milliseconds. This means that the vectorization in this case yielded a speed up of 6.74
(Speedup is defined as the ratio of the total computation time of the algorithm without
vectorization to the corresponding computation time with vectorization).

Next, we compare our approach to the expanded static case proposed by Dreyfus
(1969). We implemented that scheme as efficiently as we would, and achieved an
execution time of 2.2 milliseconds to find the time-dependent |east-time path between one
origin and one destination, for one time step on the Austin core network. In order to
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compare it to our proposed agorithm, the time-dependent |east-time paths must be
caculated from al 625 nodes of the network, to one destination and for 503 time steps for
each node. This calculation would require a total time of 0.0022x625x503 = 691.25
seconds. However, the calculation of one path for one node and one time step produces at
the same time the paths to the destination from every node along the path for one time step.
The maximum number of nodesin a path for the real street network was 72. Therefore, we
can estimate alower bound on the total execution time, by assuming that every time one
path is computed, 72 other not previously calculated paths are obtained at the same time.
This lower bound is 9.6 seconds, which greatly exceeds the 0.107 seconds achieved with
the proposed agorithm

The proposed agorithms take advantage of two main characteristics of networks with
time-dependent arcs. One is that only few paths between a given OD pair become best
paths at any point in time. Usually, three or four paths are interchanged as best paths at
different time steps, one path often maintaining its best path status for most of the time.
For example, the maximum number of paths that we observed during the testing of the real
street network was seventeen (out of a possible 503).

The second characteristic of dynamic networksisthat even if different paths were best
at different times between a given OD, these paths would be likely to share the same next-
to-the-origin node (i.e. second node in the path). This means that most of the best paths
from a given node result from the scanning of just one of the neighboring nodes. The
effectiveness of our algorithm is attributed to these two reasons. Specifically, the fewer the
paths that are best at different times, the closer isthe behavior of the algorithm to that of
static label correcting algorithms. In the extreme case that the same path remained best
between agiven OD pair for all the time steps, the corresponding origin node would
contribute to the total computation time of the algorithm asif the network were static. Even
if more than one path were best for agiven OD pair, these paths could be calculated in just
one scanning of a neighbor node. From Table 3 1, we can see that for the real street
network of Austin, TX only 111 (736-625) nodes were scanned for a second time,
athough in general different paths were best at different timesfor agiven origin node.
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CHAPTER 8
CONCLUSION

The procedures presented in this report constitute a major advance in the state-of-the-
art of dynamic assignment and traffic simulation-assignment for large-scale networks,
especially in connection with ATISSATMS applications. The success of ATISATMS
depends on the ability to use the real-time information available to the central controller for
real-time routing and traffic control decisions. The procedures developed in this study
provide and essential component in the overall decision-support methodologies needed for
ATIS/ATMS planning and operation.

The framework and algorithms presented in this report provide a flexible and modular
modelling capability that can evolve as the results of future research, in areas such as
tripmaker behavior and response to information become available. The procedurescanal so
be interfaced with traffic control modules as well as other ATMS support functions in the
context of an overall ATMS architecture.

To summarize, the following major procedures were developed in this study:

1. DYNASMART: A descriptive simulation-assignment framework, that meets or
exceeds al functional requirements set forth in the statement of work. Its purposeisto
predict the temporal and spatial patterns of flowsin anetwork for given time-dependent
origin-destination trip desires, network characteristicsincluding traffic control schemes,
and information supply strategies, as summarized in Figure 54.

2. System Optimal Single Class Dynamic Traffic Assignment Algorithm: The purpose
of thisalgorithm is to determine the paths to which all vehicles should be directed to, given
time-dependent O-D trip desires and prevailing traffic control scheme, so as to minimize
overal user cost (time) in the network over the duration of interest. Thisalgorithm consists
of an iterative procedure, where DY NASMART is used as a simulator to represent traffic
propagation in the network for a given time-dependent path assignment, as summarized in
Figure 55.

3. User Equilibrium Single Class Dynamic Traffic Assignment: Thisalgorithm isa
variant of the SO version. It solvesfor atime-dependent assignment of vehiclesto specific
paths, between each O-D pair, for given time-dependent O-D trip desires, so that no user
can reduce his/her travel time by unilaterally switching paths for the same departure time.
DYNASMART isagain used as a smulator within the iterative search procedure, as
summarized in Figure 56.
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4. Multiple User Classes Dynamic Traffic Assignment Algorithm: This agorithm
recognizes several classes of network users on the basis of information supply and user
behavior, including: SO users, UE users, boundedly rational users, and those with pre-
specified paths. It solves ssimultaneoudly for the paths to which SO users should be
directed to so as to minimize overal travel time in the network, as well as the paths which
UE users will follow to satisfy their requirements, recognizing that some users may be
following their own heuristic path selection rules while others may just have to be viewed
as externally specified. This algorithm is only possible because of the flexibility of
DYNASMART to consider al these classes. It is summarized in Figure 57.

5. Rolling Horizon Implementation Framework for SO Single Class and MUC

Algorithms: This Framework is intended for quas real-time implementations of the
assignment algorithms in situations where the time-dependent O-D trip desires cannot be
assumed known a priori with sufficient reliability. It isintended asthe principa manner in
whichthe DTA agorithmswould be used in real-time as an ATM S support function.
The above procedures are rather complex entities that incorporate a large number of
components and modules. Among those, major development was necessary as part of this
study in the area of path processing algorithms, described in Chapters 6 and 7. In
particular, the following path processing procedures have been devel oped:

1. K-Shortest Path (K-SP) Computation: This algorithm is used in the path
processing component of DY NASMART to solve for the K best paths from all origin
nodes to each given destination node for a given set of link travel times.

2. K-Shortest Path Update: This algorithm updates the travel times and re-sorts a set
of K stored paths; it is used in the path processing component of DY NASMART to update
the paths obtained using the K-SP computation algorithm in the time interval's between
successive computations (see Chapter 6 for detailed discussion of the logic for this
strategy).

3. K-SP Computation for Multiple User Classes. Specia version of the K-SP
computation algorithm that guarantees the best K; paths are found for each vehicle class|,
i =1,...,U (U isthe number of classes). It is used instead of the single class algorithmin
the path processing component of DYNASMART in the presence of multiple vehicle
classes.

4. K-SP Update for Multiple User Classes: Special version of the single class update
agorithm for usein conjunction with multiple vehicle classesin DY NASMART.
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5. Time-Dependent Least Time Path Algorithm: This algorithm computes the least-
time path from all origin nodes to a given destination node for all departure time intervals
(from the origin) for a given network with time-dependent link travel times. Thisa gorithm
isused in UE single user class DTA algorithm, aswell asinthe MUC DTA algorithm,
whereit receivesitsinput datafrom DY NASMART.

6. Time-Dependent Least Cost Path Algorithm: This algorithm computes the least cost
path from al origin nodes to a given destination, for given time-varying costs on the
network links. These costs are different from the travel times per se. In this study, they
consist of the marginal trip times, in the context of the SO single user class DTA algorithm
and theMUC DTA agorithm.

Several aspects of the procedures developed here can benefit from additional
investigation. In addition to the various modelling elements that could be improved
through further field observations, guidelines pertaining to the choice of various user-
controlled parameters in the dynamic assignment process are necessary. These include
issues of the appropriate length of the assignment interval relative to the simulation interval,
frequency of path updates, assumptions made in the rolling horizon implementation and the
sensitivity to various modelling and execution assumptions described in connection with
the procedures in question. These issues will form the basis of continuing investigation
that builds on the foundation developed in this study.
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DESCRIPTION OF INPUT AND OUTPUT DATA FILES
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DESCRIPTION OF INPUT AND OUTPUT DATA FILES

This Appendix documents the input data set and output datafilesinthe DY NASMART
network assignment-simulation model. This description is intended primarily to illustrate
the kind of information input to DYNASMART, and the kinds of reports its produces.
This description is not meant to be a self-contained user’s guide. The input and output file
nomenclature applies primarily to the implementation of DY NASMART on the University
of Texas CRAY Y-MP computer. Because it is written in CRAY FORTRAN (CFT 77),
this version has been found to be highly portable to other environments, including
CONVEX C220, IBM RISC/6000, and SUN SPARC Il workstations with only very
minor modifications. However, some of the output file structure may need to be modified
for implementations on different platforms. .

The current version of DYNASMART consists of 20 subroutines, and its program
structure is very flexible for adding other functions, such as different behaviora rules and
different vehicle classes. DY NASMART can also be applied in different situations. For
example, amodified version of DYNASMART is used as the simulator in the SO, UE, and
MNC dynamic traffic assignment algorithms.

INPUT DATA DESCRIPTION

Data sets and parameters used in DYNASMART cover transportation planning, traffic
simulation, traffic control and user behavior components. This section illustrates these data

sets and parameters.
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1. Network data
The data set is used to define network configurations.

A. Basic Data
NZONES : number of zones in the network
NNODES : number of nodes in the network
NARCS : number of arc-chains
N : number of links (segments)
NDESTS: number of destinations
KAY : “K" for the K-shortest path
B. Zonal data
IPZ(I..NZONES) : Demand zone numbers; each demand zone must have a
unique identification number
C. Destinations
IDZ(I..NZONES) : Each zone must have a centroid as a destination.
The destination node is a network node, and must be within this demand zone. The
order isthe same as zona data. There will be zeros for some zones, which means
they do not have destination nodes.
D. The Mapping between demand zones and network nodes
IZONE(network node) = demand zone number
For each network node, there must be an associated demand zone number.
E. Link data
IUNOD : upstream node
IDNOD : downstream node
LENGTH : Length of thelink (in feet)
14 : 0: no generation
1 : volume from the zone of the upstream node
2 : volume from the zone of the downstream node
NLANES : number of lanes
VMAX : the maximum velocity (miles/minute)
SAT : saturation flow rate (vehicles/second)
LINK_IDEN : link identification
1: freeway link
2 : freeway segment with detector
3:onramp
4 : off ramp
5: arterid
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6: HOV lane

BAY : left-turn bay

Example:
10
1

f
N DN PRP PO NOoOo O DWNEN

50 168 168 10
2 3 4 5
13 18 25

5
1
1
1
2
2
2
3
1
0
0

2 2640 2 2 0.333
7 2640 2 2 0.333
12640 2 2 0.333
3 2640 2 2 0.333 0.

8 2640 2 2 0.333 0.

0.
0.
0.

50 5
50 5
50 5
50 5
50 5

O OO OO
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2. Demand Data
A flexible dynamic demand input format is used in DYNASMART. Users need to

define the number of loading intervals and associated time periods. For each period, an OD
matrix (zone-to-zone) needs to be prepared in order to generate and load vehicles into the

network.

Example:

7

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
0.0 1.0 1.0 1.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 0.0 1.0 1.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 0.0 1.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 1.0 0.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 1.0 1.0 0.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0

Alternatively, DYNASMART accepts input data directly in the form of a vehicles
file, containing O-D information, and possibly a pre-specified initia path, for each
generated vehicle. This capability isused primarily in conjunction with the SO, UE and
MUC dynamic assignment algorithms.
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3. Scenario input data

In this data set, users can define various parameters and variables describing a

particular scenario for a simulation run. Below is an example list of such parameters used
in some of our experiments. It is expected that additional parameters will be included in
this file for specific applications.

RIBFA : relative indifference band
BOUND : threshold bound (minutes)
RNUMBER : a multiplication factor for demand generation (load factor)
ISEED : random number seed (123457)
IPINIT : index for initial routes
0: randomly select fromK paths
1. select best current path at origin
COM_FRAC : fraction of compliant vehicles
NTTO : maximum simulation length (in minutes)
TIl : simulation interval (in minutes)
INDEX-SIG : index for signal control
0 : deactivate signal control
1: keep signd control
CLASS and CLASSPRO: define multiple user classes for System Optimal case
1 : vehicles with prescribed paths
2 . vehicles with SO paths
3 : vehicles with UE paths
4 : vehicles with real time information
CLASS2 and CLASSPROZ : define multiple user vehicle classesin DYNASMART
1 : non-equipped vehicles, passenger car (PC)
2 : non-equipped vehicles, truck
3: non-equipped vehicles, high occupancy vehicles (HOV)
4 : equipped vehicles, PC
5 : equipped vehicles, truck
6 : equipped vehicles, HOV

6 : buses
OPTIONS: to activate various functions
Example:
0.00 0.00 0.00 1.00 123457 1
0.5
120 0.1
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1 index for signal control
2 : index for left capacity
1: option for left turn test
0 : option for bay (1: bay, 0 w/o bay !

1: option for us

1 : option for bus operation

4
0.00 0.00 0.00 0.00

6

0.5 0 0O 0.5 0.00 o0.00
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4, Signal control data
In this file, users need to define the control type and parameters for each
intersection in the surface street network.
A. Signal Node
NODE(l,l) : node number
NODE(I,2) : control type
1: no control
2:yiddsign
3:stop sign
4 : pretimed control
5 : actuated signal control
NODE(I,3) : phase number, needed only for control types 4 and 5
NODE(I,4) : cycle length, needed only for control types 4 and 5
B. Green time allocation
ITMP : node number
NSIGN(I,l) : phase number
Pretimed control (actuated signal control data)
NSIGN(I,2) : offset (the maximum green time)
NSIGN(I,3) : green time (the minimum green time)
NSIGN(l,4) : amber time
NSIGN(I,5) : number of inbound links in this phase
NSIGN(I,6: 11) : associated links' number
C. Movement for each approach for each phase
GMOVE(I,phase number, |-8)

Example:
112 60
242 60
342 60
442 60
542 60
612 60
742 60
a52 60
2 1 0 25 5 2 1 3
2 2 0 25 5 2 44 a
3 1 025 5 2 2 9
3 2 025 5 2 2 4
4 1 025 5 2 3 5
4 2 0 25 5 2 10 45
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5. ramp control data
In thisfile, ramp and variable message signs are specified, especialy for freeway

operations.
DEC NUM : detector number for ramp control
VMS_NUM : Number of VMS
HOV-OCCP : % of high vehicle occupancy
A.Ramp Data
Detector ID number
From Node
To Node
Upstream Position (feet)
Downstream Position (feet)
From node of controlled ramp
To node of controlled ramp
CONSL1 : ramp parameter 1
CONS2 : ramp parameter 2
Ramp Rate : (vehicles/second)
B. VMS data
VMSID number (anumber isassigned for each VMYS)
Type: 1: speed advisory
2 . route advisory
3. congestion warning
Location : From node and To Node
Parameters for each type :
1. the speed reduction factor (speed limit, suggested speed)
2. the specific route in K-shortest paths
(the assigned path number, destination number)
3. k% of vehicles: divert to other paths
(k factor, the path assigned)
Example Data for Ramp Metering

11

1 45 44 260 250 10 45 .32 .20 0.50
2 46 45 260 250 16 46 .320 .20 0.50
3 47 46 260 250 22 47  .320 .20 0.50
4 48 47 260 250 28 48 .320 .20 0.50
5 49 48 260 250 33 49  .320 .20 0.50
6 50 49 260 250 36 50 .320 .20 0.50

Example Data for VMS
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47
23
19

46
17
13

6

5
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6. Movement data
Thisfile needs to be prepared for |eft-turn operation. Movements are defined for
every link, and the format is asfollow:

From Node
To Node
Left Turn Node
Straight Node
Right Node
Other
Example:
1 2 44 3 a
1 7 a 13
2 1 7 0 0
2 3 0 4 9 43
2 a 9 14 7
2 44 5 43
3 2
3 4
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Z.Incident data

The data for each incident includes the start and end times of the incident and its
severity. This information is pre specified for a particular scenario evaluated by
DYNASMART. However, the data can be readily modified in a rea time execution. If a
link is closed, al the vehicles will be rerouted after reaching the switching point, i.e. the
upstream node of the link.

INCI_NUM : total number of incidents

INCI(i,l) : link number

INCI(i,2) : start time of incident i

INCI(i,3) : end time of incident i

INCI(i,4) : severity of incident i
Example:

2
1 2 0.0 5.0 0.5

2 3 0.0 5.0 0.5

203



8. Bus data
The input data for bus operation includes :
BUSID : auidentifier for bus
Start Time : the start time of the bus
Average dwell time
Number of Nodesin the route
The sequence of Nodes
Operation Index : 0 : no stop
1. stop at the near block
2. stop at the midblock
3. stop at the midblock bus bay
Examgole:
1 12 1.01.06
2 a 14 20 26 25
0 1 2 1 2 0
2 1824 1.0 1.0 a
24 30 29 34 33 32 31 25
0 1 2 1 2 0 0 0

3 26 311.01.07
31 25 19 13 7 1 2

0] 12 12 0 0]
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DESCRIPTIONS OF OUTPUT HLES

Output files are generated for each DYNASMART I un. Although awide variety of
output information can be obtained from DYNASMART, it is not efficient to produce all
the files due to the computational cost. Since fort.4 and fort.6 provide summary
information of a simulation run, it is recommended that at least these two output files be
produced. The numbers from 1 to 99 can be used as input and/or output file units on
CRAY, s0 the description of these files follows this sequence.

File Organization

fort.4 : simulation process monitoring unit

fort6 : title and the summary information

fort, 18 : vehicle trgectory

fort 16 : ALINEA ramp metering unit

fort.30. .. fort.39: Link Information Output Units

-- fTor the purpose of post data analysis
--some link information will be stored in

-- different files in order to perform detailed
-- analysis

-- fort.30 : generation volume

-- fort.31 : volume on links

fort.32 : vehicle-queue

-- fort.33 : velocity

-- fort.34 : concentration

-- fort.35 : velocity for the moving vehicles
-- fort.36 : concentration for the moving part
-- fort.37 : reserved for latter use

-- fort.38 ¢ greentime for eachapproach

-- fort.39 : number of vehicles crossing intersection

O O0O0000000000000O0
I
|

fort.40 . . fort.49: Input Data Units
fort.90 . . fort.99: reserved for debugging work

File Listing

total 15243

drwx------ 2 cedrl32 cedr 4096 Jan 25 15:57 ./
drwxr-xr-x 43 cedrl32 cedr 4096 Jan 25 16:18 ../
—W——————= 1 cedrl32 cedr 67 Jan 25 15:57 fort.10
—W——————= 1 cedrl32 cedr 67 Jan 25 15:57 fort.15
—W——————= 1 cedrl32 cedr 6206 Jan 25 15:57 fort.16
-rW——————-— 1 cedrl32 cedr 30591530 Jan 25 15:57 fort.17
-rW-—————- 1 cedrl32 cedr 5475128 Jan 25 15:57 fort.18
-rW-———--- 1 cedrl32 cedr 97 Jan 25 15:57 fort.2
-W——————- 1 cedrl32 cedr 13651342 Jan 25 15:57 fort.20
-rW---——-—- 1 cedrl32 cedr 67 Jan 25 15:57 fort.21
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cedrl32
cedrl32
cedr132
cedril2
cedrl32
cedrl32
cedrl32
cedri32
cedrl32
cedrl32
cedrl32
cedrl32
cedrl32
cedrl32
cedrl3z
cedrl32
cedrl32
cedrl32
cedrl32
cedrli2
cedrl32
cedrl32

cedr
cedr
cedr
cedr
cedr
Cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr
cedr

102893 Jan 25
4919024 Jan 25
1275264 Jan 25

67

67
67553
12027
67
2033
67

67

67

67
8798
19658
5576118
32

32

129

32
481160
6063
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Jan

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

25

25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25

15:
15:
:57
15:
Jan 25 15:
15:
15:
15:
15:
15:
15:
15:
15:
157

15

15

15:
15;
15:
:57
15:
15:
:57
15:

15

15

57
57

57
57
57
57
57
57
57
57
57
57

57
57
57

57
57

57

fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.
fort.



fort.4 - intermediate output file for monioring the simulation process

IT : smulation time step

VEHICLES: total number of vehiclesgenerated

TAGGED IN : Number of tagged vehiclesin the network

OUT-N : Number of non-tagged vehiclesthat have reached their destination
OUT-T : Number of tagged vehicles that have reached their destination

IT: 1 VEHICLES: 0 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
IT: 2 VEHICLES: 2 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
IT: 3 VEHICLES: 44  TAGGED IN: 0 OUT-N: 0 OUT-T: 0
IT: 4 VEHICLES: 122 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
IT: 5 VEHICLES: 191 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
IT: 6 VEHICLES: 242  TAGGED IN: 0 OUT-N: 0 OUT-T: 0
IT: 7 VEHICLES: 309 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
IT: 8 VEHICLES : 379 TAGGED IN: 0 OUT-N: 1 OuUT-T: 0
IT: 9 VEHICLES: 427 TAGGED IN: 0 OUT-N: 2 OUT-T: 0
IT: 10 VEHICLES: 502 TAGGED IN: 0 OUT-N: 3 OUT-T: 0
IT: 11 VEHICLES: 571 TAGGED IN: 0 OUT-N: 5 OUT-T: 0
IT: 50 VEHICLES: 3027 TAGGED IN: 0 OUT-N: 531 OUT-T: 0
IT: 51 MEHIAQES: 3074 TAGGED IN: 0 OUT-N: 560 OUT-T: 0
IT: 52 VEHICLES: 3195 TAGGED IN: 121  OUT-N: 582 OQUT-T: 0
IT: 53 VEHICLES: 3297 TAGGED IN: 223 OUT-N: 615 OUT-T: 0
IT: 54 VEHICLES: 3410 TAGGED IN: 336 OUT-N: 652 OUT-T: 0
IT: 55 VEHICLES: 3508 TAGGED IN: 434  OUT-N: 717 OUT-T: 0
IT: 56 VEHICLES: 3616 TAGGED IN: 542 OUT-N: 757 OUT-T: 0
IT: 57 VEHICLES: 3718 TAGGED IN: 641 OUT-N: 792 OUT-T: 3
IT: 58 VEHICLES: 3837 TAGGED IN: 758 OUT-N: 824 OUT-T: 5
IT: 59 VEHICLES: 3931 TAGGED IN: 851 OUT-N: 851 OUT-T: 6
IT: 60 VEHICLES: 4071 TAGGED IN: 988 OUT-N: 883 OUT-T: 9
IT: 61 VEHICLES: 4079 TAGGED IN: 993 OUT-N: 910 OUT-T: 12
IT: 62 VEHICLES: 4226 TAGGED IN: 1139 OUT-N: 944 OQUT-T: 13
IT: 63 VEHICLES: 4366 TAGGED IN: 1278 OUT-N: 996 OUT-T: 14
IT: 64 VEHICLES: 4460 TAGGED IN: 1367 OUT-N: 1062 OQUT-T: 19
IT: 65 VEHICLES: 4562 TAGGED IN: 1468 OUT-N: 1106 OUT-T: 20
IT: 66 VEHICLES: 4652 TAGGED IN: 1557 OUT-N: 1149 OUT-T: 21
IT: 67 VEHICLES: 4789 TAGGED IN: 1685 OUT-N: 1195 OUT-T: 30
IT: 68 VEHICLES: 4887 TAGGED IN: 1775 OUT-N: 1241 OUT-T: 38
IT: 901 VEHICLES: 26214 TAGGED IN: 18 OUT-N: 6216 OUT-T: 19908
IT: 902 VEHICLES: 26231 TAGGED IN: 18 OUT-N: 6216 OUT-T: 19908
IT: 903 VEHICLES: 26231 TAGGED IN: 18 OUT-N: 6221 OUT-T: 19908
IT: 904 VEHICLES: 26233 TAGGED IN: 17 OUT-N: 6224 OUT-T: 19909
IT: 905 VEHICLES: 26233 TAGGED IN: 16 OUT-N: 6225 OUT-T: 19910
IT: 906 VEHICLES: 26233 TAGGED IN: 14 OQUT-N: 6225 OUT-T: 19912
IT: 907 VEHICLES: 26233 TAGGED IN: 13 OUT-N: 6225 OUT-T: 19913
IT: 908 VEHICLES: 26233 TAGGED IN: 13 OUT-N: 6228 OUT-T: 19913
IT: 909 VEHICLES: 26233 TAGGED IN: 12 OUT-N: 6230 OUT-T: 19914

207



IT: 910 VEHICLES: 26233
IT: 911 VEHICLES: 26233
IT: 912 VEHICLES: 26233
IT: 913 VEHICLES: 26233
IT: 914 VEHICLES: 26233
IT: 915 VEHICLES: 26233
IT: 916 VEHICLES: 26257
IT: 917 VEHICLES: 26257
IT: 918 VEHICLES: 26257
IT: 919 VEHICLES: 26257
IT: 920 VEHICLES: 26257
661 711 707 644
623 648 740 649
656 734 686 711
696 720 697 671
0] 0] O 684
TOTAL GONE OUT= 26179

TAGGED
TAGGED
TAGGED
TAGGED
TAGGED
TAGGED
TAGGED
TAGGED
TAGGED
TAGGED
TAGGED

IN:
IN:
IN:
IN:
IN:
IN:
IN:
IN:
IN:
IN:
IN:

711 684
694 672
674 715
662 746
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683
673
723
703

PERDNOOOON~N OO

OUT-N:
CUT-N:
OUT-N:
OUT-N:
QUT-N:
OUT-N:
OUT-N:
CUT-N:
CUT-N:
CUT-N:
CUT"-N:

675 696
697 680
694 705

0

0

6234

OUT-T:
6235 OUT-T:
6236 OUT-T:
6243 OUT-T:

6244 QUT-T:

6244 OUT-T:
OUT-T:
6246 OUT-T:
OUT-T:

6244

6246
6248
6253
707
681
666
0

OuT-T

OUT-T:

19915
19917
19917
19919
19919
19920
19920
19920
19922
19922
19925



fort.6 - major output file for system performance

Overal information for system performance isincluded in fort.6, and error message (if
any) will be shown in thisfile.

EXAMPLE :

khkkkkkhhkhhhhhkhhkhhhhrhhhhhhdhkhhhhhrhhrdrrdhhkdrhhrhhkhrrhxk

DYNASMART V1.0: Dynamic Network Assignnment *

& Sinmulation Mdel .

Devel oped in \

The University of Texas at Austin

****************!I\c/a';rgbr*;Q'k*}ggﬂ*******************
khkhkkkkhkkkhhrhhhkhhhrdhhhhhrdhrdhhrdrrdhrdd

’ Basi ¢ | nformation

****************************f*************

*

* ok % %

*

NETWORK DATA
NODES : 50
LINKS : 168
DESTS : 10
ZONES @ 10

SI GNAL DATA
NO CONTRCL 16
YI ELD SI GNS 0
STCP SI GNS 00
PRETIMED CONTRO : 26
ACTUATED CONTROL : 8

RAMP  DATA
RAMP CONTROL : O

ASSUMPTI ON
LEFT_OPTION : 1

PATH K : 5
TIME for UPDATING : 3.
I NI TIAL ROUTES
1. assign the best path
2. Use current path information

Prescribed Paths : O.

S0 Paths : 0.
UE Paths : 0.
REAL TIME Paths : O

Non- equi pped PC
qui pp TRUCK
HOV
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Equipped PC : 0.5
Equipped TRUCK : 0.
Equipped HOV 0

khkhkhkhkhhhkhhhhhhhhhkhhhk

Loading Information
Ak hkkkhkrkrkhkhkiAhxdkhkhkhkkk

:5. fac ¢+ 5.00 TOT VEH: 1170 GEN: 1170 OUT_N:

:10. fac : 8.00 TOT VEH: 2946 GEN: 1776 OUT_N:
:15. fac : 10.00 TOT VEH: 6546 GEN: 3600 OUT_N:
:20. fac : 10.00 TOT VEH: 9426 GEN: 2880 OUT_N:
:25. fac : 8.00 TOT VEH: 11994 GEN: 2568 QOUT_N:
:30. fac : 5.00 TOT VEH: 13269 GEN: 1275 OUT_N:
:35. fac : 5.00 TOT VEH: 13314 GEN: 45 OUT_N:
:40. fac : 0.00 TOT VEH: 13314 GEN: 0 QUT_N:

HHE3d99 9
\8]
O

*xxxxx* YVehicle Information *****x*%

Total vehicles : 13314
Non-tag vehicles : 1215

Tag ( stil in ) : 0

Tag (reached ) : 12099
other ( ? ) : 0

TSRS SRS SRR E SRR R RS ER SR

* (QVERALL STATISTICS REPORT *

kKKK A AR AK AR A Ak bk hkhrhkhkkkdhhkrhkrkhkdhhdk

MAXIMUM SIMULATION TIME = 120. MINS
The SIMULATION INTERVALS = 427
SIMULATION TIME = 42.7 MINS

START-UP TIME = 5.

END OF TIME OF INTEREST = 30.

TOTAL VEHICLES = 12099

WITH INFO = 6091 WITHOUT INFO = 6008

information for vehicle switching & decision

total decision number : 79964

62 112 175 249 246 328 329
320 278 284 259 256 213 221
1244

total switch number : 21721

62 562 1239 1268 1170 934 557
4 1 0 0 0 0 0

0

TOTAL TRIP TIMES (HRS)
OVERALL : 1017.616785978
NOINFO : 515.6623351968
INFO : 501.9544507815

AVERAGE TRIP TIMES (MINS)
OVERALL : 5.04645071152
NOINFO : 5.149757009288
INFO : 4,944552133786

TOTAL. OVERALL TIMES (HRS)
OVERALL : 1137.550119312
NOINFO : 576.7256685302
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385 OUT_T :
765

20
0
0
0

13

32

330
189

223

0

OUuT_T
OUT_T
OUT_T
OUT_T
OUT_T
OUT_T
OUT_T

346
176

0

:331
:1903
12398
: 2549
:2508
:2043
2345

315
159



INFO : 560. 8244507816

AVERAGE OVERALL TRIP TIMES (MNS)

OVERALL: 5.641210609034
NO NFO : 5.75957724897
INFO : 5.524456911327

TOTAL ENTRY QUEUETI MES (HRS)
OVERALL: 119. 9333333334
NO NFO :  61.06333333336
INFO : 58. 87000000003
AVERAGE ENTRY QUELE TI MES (M NS)
OVERALL  0.5947598975124
NO NFO : 0. 6098202396807
INFO : 0.5799047775409

ToTAL STOP TIME | M NS |
OVERALL: 26432.9790396
NO NFO : 13684.31511536
| NFO . 12748. 66392443

AVERAGE STOP TIME [ M NS |
OVERALL: 2.184724278007
NO NFO : 2.277682276191
| NFO : 2.093032987101

TOTAL TRIP DI STANCE | M LES |
OVERALL: 16350. 12499954
NO NFO : 8106.749999885
| NFO : 8243. 374999882

TOTAL VEH CLES : 12099

AVERAGE TRI P DI STANCE | M LES |
OVERALL: 1.351361682745
NO NFO @ 1.349325898782
| NFO :1.353369725806
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fort.16

Output describesthe behavior of ramp-metering for every controlled ramp. It provides user
defined interval report and lists all the ramp and associated flow rate (velvser)

**** The output File for ramp-control ****
-- This file provides the changed ramp control
and changed saturation flow rate.
iteration 20

34 58 82 106 127 137 9 29 53 77 122
0.56 0.56 0.56 0.54 0.49 0.44 0.45 0.50 0.53 0.55 0.56

iteratim 40

34 58 82 106 127 137 9 29 53 77 122
0.52 0.45 0.36 0.23 0.24 0.32 0.28 0.29 0.34 0.45 0.51

iteration 60

34 58 82 106 127 137 9 29 53 77 122
0.49 0.24 0.12 0.02 0.04 0.28 0.23 0.06 0.05 0.25 0.43

iteration 80

34 58 82 106 127 137 9 29 53 77 122
0.44 0.27 0.18 0.09 0.04 0.14 0.17 0.18 0.20 0.21 0.33

iteration 100

34 58 82 106 127 137 9 29 53 77 122
0.48 0.19 0.17 0.02 0.02 0.23 0.20 0.20 0.28 0.39 0.42

iteration 120

34 58 82 106 127 137 9 29 53 77 122
0.47 0.27 0.07 0.02 0.02 0.24 0.18 0.19 0.15 0.28 0.42

iteration 140

34 58 82 106 127 137 9 29 53 77 122
0.43 0.23 0.11 0.02 0.02 0.30 0.23 0.22 0.23 0.32 0.33

iteration 160

34 58 82 106 127 137 9 29 53 77 122
0.49 0.26 0.07 0.02 0.12 0.27 0.22 0.24 0.23 0.35 0.44

iteration 700
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34 58 82
0.52 0.37 0.33

iteration 720

34 58 82
0.51 0.29 0.27

iteration 740

34 58 82
0.52 0.38 0.39

iteration 760

34 58 82
0.53 0.43 0.40

iteration 780

34 58 82
0.52 0.37 0.40

iteration 800

34 58 82
0.54 0.42 0.39

iteration 820

34 58 82
0.52 0.38 0.40

iteration 840

34 58 82
0.55 0.43 0.42

iteration 860

34 58 82
0.54 0.43 0.47

iteration 880

34 58 82
0.56 0.56 0.56

106

0.33 0.

106

0.29 0.

106

0.42 0.

106

0.37 0.

106

0.43 0.

106

0.37 0.

106

0.42 0.

106

0.38 0.

106

0.53 0.

106

0.56 0.

127
38 0.

127
44 0.

127
55 0.

127
56 0.

127
55 0.

127
55 0.

127
55 0.

127
56 0.

127
55 0.

127
56 0.

137 9
56 0.45 0.

137 9
56 0.39 0.

137 9
56 0.42 0.

137 9
56 0.39 0.

137 9
56 0.43 0.

137 9
56 0.38 0.

137 9
56 0.43 0.

137 9
56 0.38 0.

137 9
56 0.42 0.

137 9
56 0.38 0.
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29 653
36 0.35

29 653
32 0.34

29 653
29 0.26

29 653
32 0.35

29 653
31 0.27

29 653
39 0.39

29 653
40 0.37

29 653
40 0.43

29 653
39 0.36

29 653
40 0.44

77 122

.34 0.39

77 122

.39 0.47

77 122

.37 0.49

77 122

.38 0.51

77 122

.35 0.45

77 122

.41 0.47

77 122

.42 0.49

77 122

.48 0.52

77 122

.43 0.49

77 122

.48 0.50



fort. 17 -- intermediate output file

Thisfile providesinformation on the simulation processin terms of vehicle movements and
records vehicles traversing from link to link. Information includes vehicle's ID, current
link, next link, and time of transfer. The last index shows the previous number of
traversing for thistrip.

Vehicle Nowv Next Time : 1 138 142 0.27 0
Vehicle Now Next Time : 2 163 159 0.27 0
Vehicle Now Next Time : 41 138 142 0.28 0
Vehicle Now Next Time : 42 138 141 0.28 0
Vehicle Now Next Time : 43 163 159 0.28 0
Vehicle Now Next Time : 44 163 159 0.28 0
Vehicle Now Next Time : 121 138 142 0.28 0
Vehicle Now Next Time : 122 163 159 0.28 0
Vehicle Now Next Time : 188 138 142 0.28 0
Vehicle Nowv Next Time : 189 138 142 0.28 0
Vehicle Now Next Time : 190 163 159 0.28 0
Vehicle Now Next Time : 191 163 159 0.28 0
Vehicle Nowv Next Time : 3 15 0.50 0
Vehicle Now Next Time : 5 3 2 0.50 0
Vehicle Now Next Time : 6 4 7 0.50 0
Vehicle Now Next Time : 8 10 9 0.50 0
Vehicle Now Next Time : 9 11 15 0.50 0
Vehicle Now Next Time : 10 12 32 0.50 0
Vehicle Now Next Time : 11 13 12 0.50 0
Vehicle Now Next Time : 12 14 16 0.50 0
Vehicle Now Next Time : 15 17 41 0.50 0
Vehicle Now Next Time : 16 18 1 0.50 0
Vehicle Now Next Time : 18 20 44 0.50 0
Vehicle Now Next Time : 19 39 16 0.50 0
Vehicle Now Next Time : 21 42 19 0.50 0
Vehicle Now Next Time : 23 44 67 0.50 0
Vehicle Now Next Time : 24 63 41 0.50 0
Vehicle Now Next Time : 26 66 44 0.50 0
Vehicle Now Next Time : 28 68 90 0.50 0
Vehicle Now Next Time : 29 87 65 0.50 0
Vehicle Nowv Next Time : 31 90 67 0.50 0
Vehicle Now Next Time : 33 92 114 0.50 0
Vehicle Now Next Time : 34 111 88 0.50 0
Vehicle Now Next Time : 36 132 115 0.50 0
Vehicle Nov Next Time : 37 133 119 0.50 0
Vehicle Now Next Time : 38 134 137 0.50 0
Vehicle Now Next Time : 39 135 127 0.50 0
Vehicle Nov Next Time : 40 136 130 0.50 0
Vehicle Nov Next Tine : 239 138 142 0.28 0

Vehicle Now Next Time : 12000 95 99 0.82
Vehicle Now Next Time : 8769 98 94 5.32
Vehicle Now Next Time - 6497 98 94 7.31

g1 w o
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Vehicle Now Next Tim :
Vehicle Now Next Time
Vehicle Now Next Time
Vehicle Now Next Tim
Vehicle Now Next Time :
Vehicle Now Next Time :
Vehicle Now Next Time
Vehicle Now Next Time

Vehicle Now Next Time :
Vehicle Now Next Time :

Vehicle Now Next Time :
Vehicle Now Next Tim :
Vehicle Now Next Time :
Vehicle Now Next Time :

Vehicle Now Next Time :
Vehicle Now Next Tim :

Vehicle Nowv Next Time :

Vehicle Now Next Tin-e :
Vehicle Now Next Time :
Vehicle Now Next Time :

11363
9627
8963

7979

12191
10322

: 10466
: 10882

10105
11031
10452
10389
12072
12193
9649
9413
8933
9351
6740
8253

98
98
98
98
98
99
99
99
99
99
99
99
99
101
103
103
103
103
103
103

94
93
96
94
95
106
106
106
102
104
102
104
102
143
98
98
98
98
98
98
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.74
.24
.43
.69
.56
.50
.66
.41
.82
.80
.02
.13
.64
.51
.59
.39
.94
.30
.32
.46
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fort. 18

Fort. 18 lists al vehicles trgectories. Someinformationinthefirst lineinclude:
vehicle ID #
what kind of tag: 0: not tagged
1 Tag% vehicle but did not reach the destination before the end of
simulation interval
2 : Tagged vehicle
information : 0 : without information
1: withinformation
From : starting node
To : destination node
ST : Departuretime (from0.0)
ET:Arrivaltime(mins)
NN : number of nodesin thistrip
Then, nodes of the path, cummulative trip times, link trip times and delay time will be listed
under the vehicle information.

**** Qutput file for vehicles tranjectories ****

This file provides all the vehicles tranjectories.

Vehicle( # tag inf From To ST ): 10 0 37 9 0.00 4.11
8
37 38 39 40 41 42 43 9
0.27 0.83 1.38 1.95 2.51 3.07 4.11
0.27 0.55 0.56 0.56 0.56 0.56 1.04
0.00 0.00 0.16 0.00 0.00 0.16 0.00
Vehicle( # tag inf From To ST ): 2 0 O 44 29 0.00 4.74

8
44 43 42 41 40 39 28 29
0.27 0.83 1.39 1.95 2.51 3.70 4.74
0.27 0.56 0.56 0.56 0.56 1.19 1.04
0.00 0.00 0.16 0.00 0.00 0.29 0.14

OPFr Ww

Vehicle( # tag Inf From To ST ): 4 0 O 1 2 0.10 2.59
4

1 2
259
1:06
0.16

oo
o U1 ol
I J = N
or K,
= o Ul
N R

Vehicle{ # tag inf From To ST ): 5 0 O 2 35 0.10 7.37
8

1 7 13 19 25 31 35

.93 4.04 5.15 6.21 7.37

.08 1.12 1.11 1.06 1.16

.00 0.12 0.11 0.16 0.00

ooo
ouru
oOoOOoON
Orpr

-8
-3
-4

A DbhO
(@ V]

Vehicle( # tag iInf From To ST ): 6 0 O 2 12 0.10 4.65
6
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2 3 4 5 6 12
0.50 1.52 2.55 3.60 4.65
0.50 1.01 1.03 1.05 1.05
0.00 0.11 0.13 0.15 0.00
Vehicle( # tag inf Frcxn To ST ): 11200 2 0 19 1 14.00 5.40

6
19 20 19 13 7 1
0.53 1.74 2.91 4.33 5.40
0.53 1.20 1.18 1.42 1.07
0.00 0.10 0.18 0.32 0.00

Vehicle( # tag Inf From To ST ): 11201 2 0 19 18 14.00 8.29
9
19 25 31 35 36 34 30 24 18
0.55 1.62 2.75 3.87 4.96 6.06 7.20 8.29
0.55 1.07 1.13 1.12 1.09 1.10 1.14 1.09
0.00 0.00 0.13 0.12 0.00 0.00 0.00 0.19

Vehicle( # tag inf from To ST ): 11202 2 0 20 33 14.00 4.30
5
20 26 31 32 33
0.59 1.65 3.21 4.30
0.59 1.06 1.56 1.09
0.00 0.00 0.56 0.00

Vehicle( # tag inf From To ST ) : 11203 2 O 21 3 14.00 4.07
4
21 15 9 3
1.45 2.85 4.07
1.45 1.39 1.22
0.85 0.29 0.00

Vehicle( # tag inf From To ST ): 11204 2 O 21 7 14.00 4.15
5
21 20 19 13 7
0.61 1.81 2.99 4.15
0.61 1.20 1.18 1.17
0.00 0.10 0.18 0.00

Vehicle( # tag inf From to ST ): 11205 2 O 21 33 14.00 3.37
4
21 22 28 33
0.57 2.30 3.37
0.57 1.73 1.07
0.00 0.13 0.17

Vehicle( # tag inf From To ST ): 11206 2 O 21 36 14.00 4.49
5
21 27 32 35 36
0.79 2.28 3.31 4.49
0.79 1.49 1.03 1.18
0.29 0.59 0.00 0.18
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Vehicle{ # tag inf From To ST ):

5

21 40 41 16
2.61 3.25 4.61 5.81
2.61 0.63 1.36 1.20
2.11 0.00 0.46 0.10

Vehicle( # tag inf From To ST ):

8

5

6

22 16 42 41

17

40

39

38

1.15 7.80 8.46 9.10 9.71 10.29 10.86
1.15 6.64 0.66 0.64 0.62 0.58 0.57
0.65 5.44 0.00 0.14 0.12 0.00 0.00

Vehicle( # tag inf From To ST ):

22 23 22 16
0.61 1.88 2.96 4.04
0.61 1.27 1.08 1.08
0.11 0.00 0.00 0.18

Vehicle( # tag inf From To ST ):

22 28 27 21
0.89 2.44 3.54 5.05

10

15
6.27

11211

14
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11207 2 O

11208 2 O

37

11210 2 O

21

22

22

17 14.00 5.81

37 14.00 10.86

10 14.00 4.04

14 14.00 6.27



fort.20 - intermediate outpuit file

This file shows the demand generated from each zone for different time intervals. In

DYNASMART, demand generation can follow different user-specified distributions. The

unit for generation is vehicles per second.

i

iterval

zone number
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[ojeoloNoNoNe)
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000000
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000000

MMM mm
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g

>

num

Zone

MM meMme
QO OOO0OO0O

MMOMMmMmoM
cocoocoococo

mmmoamnm
cocoococoo

MomOmn
Oocoo0oo

0333333
0000000

3333333
0000000

™

g

=]

num

Zone

MMM mm
ococoogoco

MMMmOmMmM
ococococoo

000 mm o
(clololNoNoNe]

oMMmMmMm®m
oO0o0ooo

3333333
0000000

QuQuQvaQuQuQu
Oococoooo

<

mi

Soocoococoo

n

Zone

0 0 0 00
[oNolololeNe]

0 0 0 0 0
[oNololNoNeNe

033333
Ococococo

0 0 0 0 0
[oNololNoNoeNe)

MOMOHOHM
cooococo

™
o

MMOOMMOMM

o

: 5

zone number

0 0 ™ @ 0 0
[cNoloNoNeNe]

SMmMmMmMo
cocooocoo

mmoanmno
coococoo

0 ™00 @
OO0 O0OO0OO0OoOo

3333333
0000000

0 09 00 0 0 0 ™
[cleololololoNe)
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fort-22 - intermediate output file

This output file shows the detail of signal operations. The information is generated for
every time step, and records the change of signal operation. If there is no change, only the
time step sequence will be listed.

AC : actuated signal control

N : node number

Phase : phase sequence

start of green time

end of greentime

amber time

(Amber time is fixed as part of the input data.)

tin-e step : 1

N Phase GR : 7 1 0 45 50
N Phase G R : 7 2 50 95 100
AcNPhaseGR : 8 1 0 10 15
AcNPhaseGR : 8 2 15 25 30
N Phase GR : 9 1 0 45 50
N Phase GR : 9 2 50 95 100
NPhaseGR: 10 1 0 45 50
NPhaseGR: 10 2 50 95 100
Ac N Phase G R : 11 1 0 10 15
Ac N Phase G R : 11 2 15 25 30
Ac N Phase G R : 14 1 0 10 15
Ac N Phase G R : 14 2 15 25 30
NPhaseGR: 15 1 0 45 50
N Phase G R : 15 2 50 95 100
NPhaseGR: 16 1 0 45 50
NPhaseGR : 16 2 50 95 100
AcNPhaseGR: 17 1 0 10 15
Ac N Phase G R : 17 2 15 25 30
Ac N Phase G R : 20 1 0 10 15
Ac N Phase G R : 20 2 15 25 30
NPhaseGR: 21 1 0 45 50
NPhaseGR : 21 2 50 95 100
NPhaseGR: 22 1 0 45 50
NPhaseGR : 22 2 50 95 100
AcNPhaseGR: 23 1 0 10 15
Ac N Phase G R : 23 2 15 25 30
AcNPhaseGR: 26 1 0 10 15
Ac NPhase GR : 26 2 15 25 30
NPhaseGR: 27 1 0 45 50
NPhaseGR: 27 2 50 95 100
N Phase G R: 28 1 0 45 50
NPhaseGR: 28 2 50 95 100
Ac N Phase GR : 29 1 0 10 15
Ac N Phase G R : 29 2 15 25 30
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Zz2zzZ
OO
A0

CD(J'I-h(.Jk.)I\JlI

time step :
time step :
time step :
time step :
time step :
AcNPhaseGR
AcNPhaseGR
AcNPhaseGR
AcNPhaseGR
AcNPhaseGR
Ac N Phase GR :
AcNPhaseGR:
AcNPhaseGR :
AcNPhaseGR:
AcNPhaseGR
AcNPhaseGR
AcNPhaseGR
AcNPhaseGR
AcNPhaseGR
AcNPhaseGR
Ac N Phase GR

32
32
33
33

11
11
14
14
17
17
20
20
23
23
26
26
29
29

NN

50

50

NRNRNRNRPNRNRNEN R

45 50
95 100
45 50
95 100

30 75 80
80 125 130
30 75 80
80 125 130
30 75 80
80 125 130
30 75 80
80 125 130
30 75 80
80 125 130
30 75 80
80 125 130
30 75 80
80 125 130
30 75 80
80 125 130
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fort.27 - intermediate output file

Thisfile showsinitial routesfor unequipped vehicles.
Output data includes vehicle ID number, from node, to node and travel path.

vehicle from to 1, 37, 9
path 37 38 39 40 41 42 43 9 0 0

vehicle from to 2, 44, 29
path 44 43 42 41 40 39 28 29 0 0

vehicle from to 3, 1, 8
path 1 2 8 0 0 0 0 0 0 0

vehicle from to 4, 1, 2
path 1 7 1 2 0 0] 0] 0 0 0

vehicle from to 5, 2, 35
path 2 1 7 13 19 25 31 35 0 0

vehicle from to 6, 2, 12
path 2 3 4 5 6 12 0 0 0 0

vehicle from to 7, 2, 9
path 2 8 9 0 0 0 0 0 0 0

vehicle from to 8, 4, 22
path 4 3 43 42 41 40 22 0 0 0

vehicle from to 9, 4, 29
path 4 5 11 17 23 29 0 0 0 0

vehicle from to 10, 4, 18
path 4 10 11 12 18 0 0 0 0 0

vehicle from to 11, 5, 28
path 5 4 10 16 22 28 0 0 0 0

vehicle from to 12, 5,
path 5 6 5 4 3 43 42 41 40 27
path 26 0 0 0

vehicle from to 13, 5, 10
path 5 11 10 0 0 0 0 0 0 0

vehicle from to 14, 6, 5
path 6 5 4 5 0 0 0 0 0 0
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fort.28 - final output for tagged vehicles

Fort.28 provide detailed information for tagged vehicles at the end of simulation.
J: vehicle ID number

| : link number from where vehicleis generated

DES: destination node number

ST : departure time ( minute)

TT : travel timefor thistrip ( minutes)

DIS: trip distance ( miles)

J,I,DES, ST, TT,DIS : 3075 1 21 5.00 6.04 2.25
J,I,DES, ST, TT,DIS : 3076 2 44 5.00 15.00 2.75
J,I,DES, ST, TT,DIS : 3077 2 25 5.00 4.05 1.75
J,I,DES, ST, TT,DIS : 3078 3 16 5.00 7.11 2.75
J,I,DES, ST, TT,DIS : 3079 4 14 5.00 4.29 1.75
J,I,DES, ST, TT,DIS : 3080 5 31 5.00 5.06 2.25
J,I,DES, ST, TT,DIS : 3081 6 36 5.00 17.03 4.75
J,I,DES, ST, TT,DIS : 3082 7 7 5.00 5.35 2.25
J,I,DES, ST, TT,DIS : 3083 8 15 5.00 1.61 0.75
J,I,DES, ST, TT,DIS : 3084 10 33 5.00 7.29 3.75
J,I,DES, ST, TT,DIS : 3085 11 17 5.00 2.80 1.25
J,I,DES, ST, TT,DIS : 3086 12 21 5.00 4.86 1.75
J,I,DES ST, TT,DS : 3087 13 13 5.00 7.17 2.75
J,I,DES, ST, TT,DIS : 3088 14 36 5.00 7.41 3.25
J,I,DES, ST, TT,DIS : 3089 15 30 5.00 5.19 2.25
J,I,DES, ST, TT,DIS : 3090 16 23 5.00 3.96 1.75
J,I,DES, ST, TT,DIS : 3091 16 20 5.00 8.80 3.25
J,I,DES, ST, TT,DIS : 3092 17 5 5.00 2.76 1.25
J,I,DES, ST, TT,DIS : 3093 18 1 5.00 0.52 0.25
J,I,DES, ST, TT,DIS : 3094 19 21 5.00 4.31 1.75
J,I,DES, ST, TT,DIS : 3095 20 2 5.00 3.99 1.75
J,I,DES, ST, TT,DIS : 3096 21 12 5.00 6.99 2.75
J,I,DES, ST, TT,DIS : 3097 22 5 5.00 6.70 2.75
J,I,DES, ST, TT,DIS : 3098 24 33 5.00 8.31 3.25
J,I,DES, ST, TT,DIS : 3099 25 17 5.00 5.50 2.25
J,I,DES, ST, TT,DIS : 3100 26 14 5.00 1.70 0.75
J,I,DES ST, TT,DIS : 3101 27 14 5.00 4.39 1.75
J,I,DES, ST, TT,DIS : 3102 29 26 5.00 7.82 2.25
J,I,DES, ST, TT,DIS : 3103 30 25 5.00 7.89 4.25
J,I,DES, ST, TT,DIS : 3104 31 12 5.00 4.38 1.75
J,I,DES, ST, TT,DIS : 3105 32 14 5.00 5.44 2.25
J,I,DES, ST, TT,DIS : 3106 33 8 5.00 4.18 1.75
J,I,DES, ST, TT,DIS : 3107 35 31 5.00 8.93 4.75
J,I,DES, ST, TT,DIS : 3108 36 29 5.00 5.71 2.25
J,I,DES, ST, TT,DIS : 3109 37 19 5.00 9.52 3.75
J,I,DES, ST, TT,DIS : 3110 39 21 5.00 8.99 3.25
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